امتصاص عند الطول الموجي426 نانومتر ويتبع قانون بير في مدى التراكيز 1225 –25 مكغم / مل. وكانت قيمة االمتصاصية الموالرية 7177 لتر / مول⁻¹ سم⁻¹ ودلالة ساندل 0.049 مكغم . سم⁻² وكانت الطريقة على درجة من الدقة والتوافقية فقد كانت قيمة الاسترجاعية %103.024 وقيمة االنحراف القياسي النسبي ليس اكثر من 1.25 % وقد طبقت الطريقة بنجاح على هيدروكلوريد الكلوربرومازين في المستحضر الصيدالني)Iargeactil)

المصادر References

[1]-Al Taiee, Abdulrahman Khudiar Abdulhussien, Asmaa Ahmed Mohmmed Al-Ahmed Al-Rashidy, and Mohannd Faisal Shareef. "Spectrophotometric determination of chlorpromazine hydrochloride using 4-amino benzoic acid by oxidative coupling reaction." *AIP Conference Proceedings*. Vol. 2213. No. 1. AIP Publishing LLC, 2020.

2 - عمر عدنان هاشم شريف آل، ابليش "التقدير الطيفي للترايفلوبيرازين والكلوربرومازين في المستحضرات الصيدالنية باستخدام تفاعالت[2] االكسدة، رسالة ماجستير، جامعة تكريت، كلية العلوم، ،2102 ص 80-22

[3]- M. J. H. AL-kaffiji and A. M. S. AL-anbakey, New Chromogenic Reagent for the Spectrophotometric Determination of Chlorpromazine HCI in Aqueous Solutions and Pharmaceutical Formulations', Int. J. Pharm. Pharm. Sci., vol. 5, no. 3, pp. 4-9, 2013.

[4]- Tavakkoli, Nahid, et al. "New carbon paste electrode modified with graphene/TiO2/V2O5 for electrochemical measurement of chlorpromazine hydrochloride." *Journal of the Taiwan Institute of Chemical Engineers* 83 (2018): 50-58.

[5]- Saddam, Nahlah Salman, and K. H. Kadhim. "Spectrophotometric determination of drug clonazepam in pure form and pharmaceutical tablets by oxidative coupling reaction with chlorpromazine hydrochloride." *Int. J. Pharm. Qual. Assu* 10.02 (2019): 342-348.

[6] - FADHEL1 SAHAR RIHAN and ABBAS SHEBEEB AL-KADUMI2 AND WADHAH HILAL ABDULLAH1 Determination of Chlorpromazine Hydrochloride in its Pure and Dosage Forms by Diazotization Reaction and Coupling with Diazotized Sulfanilic Acid ISSN 0975-2366 DOI:https://doi.org/10.31838/ijpr /2020.12.01.044

[7]- Jabbar, Hijran S., and Azad T. Faizullah. "Flow injection analysis with chemiluminescence detection for determination of two phenothiazines." *Int. J. Pharm. Sci. Res* 6 (2015): 474-481.

[8]- Belal, Fathalla, Hind Hadi, and Mariam Jamal. "Reversed flow-injection method for estimation of chlorpromazine in pharmaceuticals and urine samples using charge-transfer complexation." *Bulletin of the Chemical Society of Ethiopia* 33.1 (2019): 11-20.

[9]-Abd Aljabar, Rajwan. "Spectrophotometric Determination of Chlorpromazine Hydrochloride By Oxidative Coupling Reaction With Picric Acid Using Sodium Periodate." *journal of kerbala university* 13.1 (2017): 244-252.

[10]- منى محسن خضر صالح الدوري ،" التقدير الطيفي للبروميثازين هيدروكلوريد والكلوربرومازين هيدروكلوريد والمثيل دوبا باستخدام الطرائق الطيفية وكروموتةغرافيا السائلة عالية الأداء ، أطروحة دكتوراه، جامعة تكريت ، كلية العلوم ، 2015 [11]- Ali,M A. M.; and Al-rashidy A. A. M. (2022). Development of an Accurate and Rapid Spectrophotometric Method for the Determination of Loratadine Drug Using Prussian Blue in Pure and Pharmaceutical Formulation , AIP Conference

Proceedings 2660, 020015; https://doi.org/10.1063/5.0107887 Published Online: 17 November 2022. [12]- Asmaa, A. M.; shaimaa ,H. A.; and Ghazwan H.A. (Dec.2022). Spectrophotometric Determination of Loratadine drug by New 6-hydrazineyl-3-(pyridiin-4-yl)-[1,2,4] triazolo[3, 4-b][1, 3 ,4]thiadiiazole A1 derived from isonicotinic acid in pure and pharmaceuticals formulation., Egypt. J. Chem. Vol. 65, No. SI:13B pp. 273 - 280 .

Best Simultaneous Approximation of

Bounded Functions via Linear Operators in

Mohammed Shaker Mahmoud

 Alaa Adnan Auad

Department of Mathematics, College for Pure Science/ University of Anbar moh21u2009 @uoanbar.edu.iq 2 alaa.adnan.auad@uoanbar.edu.iq

Best Simultaneous Approximation of Bounded Functions via Linear Operators in \mathcal{N}_2

moh21u2009 @uoanbar.edu.iq ² a laa.adnan.auad@uoanbar.edu.iq

Abstract

The purpose of the current work is to present the concept of proximinal simultaneous approximation, and to prove the continuous of operator best simultaneous approximation in two-normed spaces. We try to find the best simultaneous approximation of bounded function by using linear operators in two- normed space.

Keywords: Two-normed spaces, simultaneous proximinal and continuous simultaneously operator.

 The notes of the best approxima has be**e**n principal presented via I. Singer(1974), in Boszny discussed set of remark on simultaneous approximation (1978) [2] , Li and Watson proved a set of results about best simultaneous approximation (1996) $&$ (1997) respectively [3], [4], then Boyd and Vandenberghe explained characteristic of convex set (2004) [9], and Mohebi achieved some properties of best simultaneous approximation (2005) [5]. Abu-sirhan presented a set of researches that include the best simultaneous approximation in $L^{\infty}(I, X)$, operator and functional spaces (2009) & (2012) respectively [6], [7], [8] , in the end ,I benefited greatly from the papers of the tow scholars Elumalai and Makandeya, on best simultaneous approximation (2009) $\&$ (2013) [10,11]. In the present work, we studied some marks of simultane. approxima. of bounded mappings by using linear operators in two-normed space. These are the results which are proven in 2-normed space; our main results are continuous and we find best simultaneous approximation set in two-normed space.

2. PRELIMINARIES

Definition 2.1 : $\mathcal{N}_2 : \mathcal{H} \times \mathcal{H} \to \mathcal{R}$ be real mapping which gratify the following properties

1) For v_0 , $v_1 \in \mathcal{H}$, $||v_0, v_1||_{b,2} = 0$ if and only if v_0, v_1 are linearly dependent.

2) $\|v_0, v_1\|_{h_2} = \|v_1, v_0\|_{h_2}$.

3) $\|av_0, v_1\|_{h_2} = |a| \|v_0, v_1\|_{h_2}$

4) $\|v_0, v_1 - v_2\|_{b,2} \le \|v_0, v_1 - v_3\|_{b,2} + \|v_0, v_3 - v_2\|_{b,2}$, for every $v_0, v_1, v_2, v_3 \in \mathcal{H}$ and $a \in \mathbb{R}$ then \mathcal{N}_2 is named two – normed linear space.

Definition 2.2: Let \mathcal{N}_2 be a two – normed linear space . for $\phi \neq \mathcal{B}, \mathcal{M} \subseteq \mathcal{N}_2$,

 $d(B, \mathcal{M}) = \sup_{h \in \mathbb{R}} \{ ||v_0, v_1 - m||_{h^2} \}$ $m \in \mathcal{M}$, denotes the distance

from the set $\mathcal B$ to the set $\mathcal M$. If

 $sup_{b \in \mathbb{R}} \{ ||v_0, v_1 - m||_{b,2} \} = sup_{b \in \mathbb{R}} \{ ||v_0, v_1 - m_0||_{b,2} \}.$

Then, we say that a function $m_0 \in \mathcal{M}$ is named a better approximation from \mathcal{B} to \mathcal{M} .

Definition 2.3: Let \mathcal{N}_2 be a two - normed linear space on \mathbb{F} (real field), \mathcal{M}_a subspace of \mathcal{N}_2 and $(M \neq \emptyset)$ a subset of \mathcal{M}_a . for a bounded subset \mathcal{Y} of \mathcal{N}_2 . As define \mathcal{N}_2

for $\in \frac{\mathcal{N}_2}{\mathcal{M}}$, and cent_M(Y) = $p_1 \in M$:

 $sup_{a\in\mathcal{Y}} ||z,a - P_1||_{b,2} = rad_M(\mathcal{Y})$ for every $z \in \mathcal{N}_2|_{\mathcal{M}_a}$.

The number $rad_M(y)$ is called the Chebyshev radius of y with respect to M and an element $p_1 \in \text{cent}_M(y)$ is called a better simultaneous approximation.

Definition 2.4. [9]: A subspace M of X (vector space) is called convex if $m_1, m_2 \in \mathcal{M}$ implies

 $D = [w \in X, w = jm_1 + (1-j)m_2, 0 \le j \le 1] \subset \mathcal{M}$.

Definition 2.5: A 2-normed ν is said to be continuous at (p, q) if

for a given $\epsilon > 0$ there \exists a $i > 0$ \exists

 $|v(p,q) - v(w,d)| \leq \epsilon$ whenever $||p - w, q||_{h^2} \leq i \&$

 $\|w, q-d\|_{b, 2} < i$ or $\|p - w, d\|_{b, 2} < i$ and $\|p, q-d\|_{b, 2}$.

Then ν is said to be continuous at each point the domain.

3. Auxiliary lemmas

Lemma 3.1: Let \mathcal{N}_2 be two – normed linear space and \mathcal{M}, \mathcal{B} be closed sub space of \mathcal{N}_2 . Then

$$
\|n,m\oplus b\|_{b,2} = \|n,m\|_{b,2} \oplus \|n,b\|_{b,2}
$$

from $n \in \mathcal{N}_2$ and $m \in \mathcal{M}$, $b \in \mathcal{B}$.

Proof: For $v \in ||n,m\oplus b||_{b,2}$, let $v_0 : \mathcal{N}_2 \to \mathcal{N}$ and $v_1 : \mathcal{N}_2 \to \mathcal{B}$ be such that $v(u) =$ $\|v_0(u), v_1(u)\oplus m\|_{b,2}$ for all $u \in \mathcal{N}_2$, $m \in \mathcal{M}$.

It is clear that $v_0 \in ||n,m||_{b,2}$ and $v_1 \in ||n,b||_{b,2}$. Define

 $\varphi: \|n,m\oplus b\|_{h,2} \to \|n,m\|_{h,2} \oplus \|n,b\|_{h,2}$

from $n \in \mathcal{N}_2$ and $m \in \mathcal{M}$, $b \in \mathcal{B}$, by

 $\varphi(\nu) = ||\nu_0, \nu_1 \oplus m||_{b,2}$. It is clear that φ is onto isometry, noting that

 $\|\varphi(v)\|_{b,2} = \max\{||v_0, v_1 \oplus m||_{b,2}\}\$

 $=$ sup max $\{||v_0(u), v_1(u) \oplus m||_{h^2}\}$

 $=\sup ||v(u)||_{h2} = ||v||_{h2}$.

4. Main results

Theorem 4.1: Let M be a closed sub space of two - normed linear space \mathcal{N}_2 , for any v_0 , $v_1 \in \mathcal{N}_2$, we have

Journal of Natural and Applied Sciences URAL No: 2, Vol: 1\April\ 2023 $||v_0(u), v_1(u) - w||_{h,2} \le ||v_0, v_1 - w||_{h,2}$ $w \in \mathcal{M}$. **Proof:** Since $M \subseteq N_2$, $w \in M$, we need to proof $||v_0(u), v_1(u) - w||_{h_2} \le ||v_0, v_1 - w||_{h_2}$ $w \in \mathcal{M}$. $||v_0(u), v_1(u) - w||_{h2} \leq \max ||v_0(u), v_1(u) - w||_{h2}$ $\|v_1(u), v_0(u) - w\|_{b,2}$. We take super. two sides, we obtain $sup \ \|v_0(u), v_1(u) - w\|_{b,2} \leq \sup \ \max \ \left\{\|v_0, v_1 - w\|_{b,2}, \|v_1, v_0 - w\|_{b,2}\right\}$. Since $w \in \mathcal{M}$ was arbitrary , then $\sup ||v_0(u), v_1(u) - w||_{h_2} \le ||v_0, v_1 - w||_{h_2}$ Now, let $j > \sup ||v_0(u), v_1(u) - w||_{h^2}$ for $u \in \mathcal{N}_2$, define $\varphi(u)$ = $\{m \in \mathcal{M} : \max\left\{\|v_0(u), v_1(u) - m\|_{h,2}, \|v_1(u), v_0(u) - m\|_{h,2}\right\} \leq \sup \|v_0(u), v_1(u) - w\|_{h,2}\}.$ The $\emptyset \neq \varphi$ is *subset of* M. Now, to show that ~ 1000 $\varphi(u)$ is convex for $\forall u \in \mathcal{N}_2$ and φ is lower semi continuous. Let $\in \mathcal{N}_2$, $m_1, m_2 \in \varphi(u)$, and $0 \leq \delta \leq 1$. $\max \{ ||v_0(u), v_1(u) - \delta m_1 - (1 - \delta)m_2||_{h^2}, ||v_1(u), v_0(u) - \delta m_1 - (1 - \delta)m_2||_{h^2} \}$ \leq max $\{\delta \|v_0(u), v_1(u) - m_1\|_{h^2} + (1 - \delta) \|v_0(u), v_1(u) - m_2\|_{h^2}, \delta \|v_1(u), v_0(u) - m_1\|_{h^2} +$ $(1-\delta)$ $\|v_1(u), v_0(u) - m_2\|_{b,2}$ $\leq \delta \max \{ ||v_0(u), v_1(u) - m_1||_{h_2}, ||v_1(u), v_0(u) - m_1||_{h_2} \}$

 $+(1-\delta)$ max $\{\|v_0(u), v_1(u) - m_2\|_{h2}, \|v_1(u), v_0(u) - m_2\|_{h2}\}$

 $\leq \delta$ sup $||v_0(u), v_1(u) - w||_{h^2} + (1 - \delta)$ sup $||v_0(u), v_1(u) - w||_{h^2} = \sup ||v_0(u), v_1(u) - w||_{h^2}$.

To demonstration that φ is lower semi continuous, let φ be an open set in M.

to investeg ate $p^* = \{u \in \mathcal{N}_2 : \varphi(u) \cap p \neq \emptyset\}.$

It is to be exposed p^* is open. Let $e \in p^*$, then $\varphi(e) \cap p \neq \emptyset$. Hance, there exists an $m \in p$ such that

 $\max\{\|v_0(\epsilon), v_1(\epsilon) - m\|_{b,2}, \|\nu_1(\epsilon), v_0(\epsilon) - m\|_{b,2}\} \leq \sup \|v_0(u), v_1(u) - w\|_{b,2}\}$

Journal of Natural and Applied Sciences URAL No: 2, Vol: 1\April\ 2023

By the definition of sup $||v_0(u), v_1(u) - w||_{b,2}$, sup $||v_0(u), v_1(u) - w||_{b,2} > inf_{a \in \mathcal{M}}$ max $\left\{\left\|v_0(\varepsilon), v_1(\varepsilon) - q\right\|_{b,2}, \left\|v_1(\varepsilon), v_0(\varepsilon) - q\right\|_{b,2}\right\}$, there exists $m \in \mathcal{M}$ such that $\max \{ ||v_0(\epsilon), v_1(\epsilon) - m^{'}||_{h_2}, ||v_1(\epsilon), v_0(\epsilon) - m^{'}||_{h_2} \}$ \lt sup $||v_0(u), v_1(u) - w||_h$, Now, $m \in p$, then there exists $\epsilon > 0$ such that $D(m,\epsilon) = \{q \in \mathcal{M}: ||q - m||_{h^2} < \epsilon\} \subseteq p$. Let $i = \frac{\epsilon}{2\|m-m'\|_{b}}$ if $\|m-m'\|_{b,2} \geq 1 \frac{\epsilon}{2}$ if $\|m-m'\|_{b,2} \leq 1$; consider that $0 \leq i \leq 1$. Let $m^* = (1 - i) m + i m^*$, then $\|m'' - m\|_{h^2} = i \|m - m'\|_{h^2} < \epsilon$, hance $m'' \in \mathcal{P}$. By the covexity of $\varphi(\epsilon)$, $m^{\prime} \in \varphi(\epsilon)$ and $\max \{ ||v_0(\epsilon), v_1(\epsilon) - m^{*}||_{h_2}, ||v_1(\epsilon), v_0(\epsilon) - m^{*}||_{h_2} \}$ \leq sup $||v_0(u), v_1(u) - w||_{h2}$ Now, let L be open ball of e such that $\left\{ ||v_0(\epsilon), v_1(\epsilon) - v_1(u)||_{h_2}, ||v_1(\epsilon), v_0(\epsilon) - v_0(u)||_{h_2} \right\}$ $< \sup ||v_0(u), v_1(u) - w||_{h^2}$ max $-\max\left\{\left\|v_0(\epsilon), v_1(\epsilon) - m^*\right\|_{\infty}, \left\|v_1(\epsilon), v_0(\epsilon) - m^*\right\|_{\infty}\right\}$

For any $u \in L$, we have

$$
\max \left\{ \left\| v_0(u_0,v_1(u_0)-m^*\right\|_{b,2},\left\| v_1(u_0,v_0(u)-m^*\right\|_{b,2} \right\}
$$

$$
\leq \max \left\{ ||v_0(u_0,v_1(u_0)-v_1(\epsilon))||_{b,2} + ||v_0(\epsilon_0,v_1(\epsilon_0)-m^*)||_{b,2}, ||v_1(u_0,v_0(u_0)-v_0(\epsilon))||_{b,2} + ||v_1(\epsilon_0,v_0(\epsilon_0)-m^*)||_{b,2} \right\}
$$

$$
\leq \max \left\{ \left\| \nu_0(u), \nu_1(u) - \nu_1(\epsilon) \right\|_{b,2}, \left\| \nu_1(u), \nu_0(u) - \nu_0(\epsilon) \right\|_{b,2} \right\} + \max \left\{ \left\| \nu_0(\epsilon), \nu_1(\epsilon) - m^* \right\|_{b,2}, \left\| \nu_1(\epsilon), \nu_0(\epsilon) - m^* \right\|_{b,2} \right\}
$$

 \leq sup $||v_0(u), v_1(u) - w||_{h_2}$. Hence, $m^* \in \varphi(u) \cap p$, $u \in p^*$, $L \in p^*$ and p is open. There exists $w \in \mathcal{M}$ such that $w(u) \in \varphi(u)$ for all $u \in \mathcal{N}_2$. Hance **Journal of Natural and Applied Sciences URAL No: 2, Vol: 1\April\ 2023**

 $\max \left\{ \left\| v_0(u_0), v_1(u_0) - w(u_0) \right\|_{b,2}, \left\| v_1(u_0), v_0(u_0) - w(u_0) \right\|_{b,2} \right\}$

$$
\leq \sup \|v_0(u), v_1(u) - w\|_{b,2}
$$

\n
$$
\left\{\|v_0, v_1 - w\|_{b,2}, \|v_1, v_0 - w\|_{b,2}\right\} \leq \sup \|v_0(u), v_1(u) - w\|_{b,2}.
$$

\nThus, $\|v_0, v_1 - w\|_{b,2} \leq \sup \|v_0(u), v_1(u) - w\|_{b,2}, w \in M.$

Theorem 4.2: Let \mathcal{N}_2 be two – normed linear space and \mathcal{M} be a closed subspace of \mathcal{N}_2 . Then

1. If $\|n \cdot m\|_{b,2}$ from $n \in \mathcal{N}_2$ and $m \in \mathcal{M}$ is simultaneous. proximinal in \mathcal{N}_2 , then \mathcal{M} simultaneous. proximinal in \mathcal{N}_2 .

2. If M has a continuous simultaneous. operator, then $||n,m||_{b,2}$ from $n \in \mathcal{N}_2$, $m \in \mathcal{M}$ is simultaneous. proximinal in \mathcal{N}_2 and has continuous simultaneous. proximity operator .

Proof: 1. Let $x_1, y_1 \in \mathcal{N}_2$. Define $v_{y_1}: \mathcal{N}_2 \to \mathcal{N}_2$ and

$$
\nu_{x_1}: \mathcal{N}_2 \longrightarrow \mathcal{N}_2 \text{ by } \nu_{y_1}(u) = y_1, \nu_{x_1}(u) = x_1 \text{ for all } u \in \mathcal{N}_2.
$$

Since $\|n\|_{n}$, $m\|_{n}$ from $n \in \mathcal{N}_2$ and $m \in \mathcal{M}$ is simultaneous.

proximinal in \mathcal{N}_2 , $\exists \mathcal{G} \in ||n,m||_{b,2}$ such that,

$$
\max \left\{ \left\| \nu_{y_0}, \nu_{y_1} - g \right\|_{b, 2}, \left\| \nu_{x_0}, \nu_{x_1} - g \right\|_{b, 2} \right\} = \sup \left\| \nu_{y_1}, \nu_{x_1} - m \right\|_{b, 2}
$$

$$
= \sup \left\| \nu_{x_1}, \nu_{y_1} - m \right\|_{b, 2} \le \left\| \nu_{x_1}, \nu_{x_1} - m \right\|_{b, 2}
$$

Then, for some $u_0 \in \mathcal{N}_2$, we have

 $\max \left\{ \left\| v_{y_0}(u_o), v_{y_1}(u_o) - g(u_o) \right\|_{h^2}, \left\| v_{x_0}(u_o), v_{x_1}(u_o) - g(u_o) \right\|_{h^2} \right\} \leq \| x_1, y_1 - m \|_{h^2}$. Hence $g(u_{o})$ is a better simultaneo.

approx. for x_1, y_1 of $\mathcal M$.

2. Let $\mathcal{B}: \mathcal{N}_2 \oplus \mathcal{N}_2 \longrightarrow \mathcal{M}$ be a cont's simultaneous.

proximity operator for $\mathcal M$. Define

$$
\mathcal{B} \quad \|n \cdot n \oplus n\|_{b,2} \rightarrow \|n \cdot m\|_{b,2} \text{ from } n \in \mathcal{N}_2 \text{ and } m \in \mathcal{M},
$$

by $B^{\prime}(\nu) = B \circ \nu$. B^{\prime} can be redefined as

 $||n, n||_{h_2} \oplus ||n, n||_{h_2} \rightarrow ||n, m||_{h_2}$ and

 $\mathcal{B} \parallel v_0, v_1 - m \parallel_{b,2}$ for all $m \in \mathcal{M}$. It is clear that

 $B \in \mathbb{R}^n$, $v_1 - m \mathbb{I}_{b,2} \in \mathbb{R}^n$, $m \mathbb{I}_{b,2}$. Let $\mathcal{G} \in \mathbb{R}^n$, $m \mathbb{I}_{b,2}$, then

and max

Thus , $\mathcal{B} \|\nu_0, \nu_1 - \mathcal{G}\|_{b,2}$ is a better simultaneo. for ν_0, ν_1

from $\|n,m\|_{b,2}$ and then $\|n,m\|_{b,2}$ is simultaneous. proximinal

in \mathcal{N}_2 . It is clear that $\mathcal{B}^{\perp} : \mathcal{N}_2 \oplus \mathcal{N}_2 \longrightarrow \mathcal{M}$ is a continuous

simultaneo. proximity operator.

Theorem 4.3: Let M be a simultaneo, sub space of a two – normed linear space \mathcal{N}_2 . If M has a linear proximity operator ,

then $\|\mathbf{z}\|_{b,2}$ is simultaneous. proximinal in $\|\mathbf{z}\|_{b,2}$

from $\pi \in \mathcal{N}_2$ and $m \in \mathcal{M}$, $n \in \mathcal{N}_2$ and has a linear **simultaneo**. proximity operator .

Proof: Let $\varphi : \mathcal{N}_2 \oplus \mathcal{N}_2 \longrightarrow \mathcal{M}$ be a linear simultaneous. proximity operator for \mathcal{M} . Define anther operator

 $B: \|z, n \oplus n\|_{b,2} \rightarrow \|z, m\|_{b,2}$ from $z \in \mathcal{N}_2$ and $m \in \mathcal{M}$, $n \in \mathcal{N}_2$,

given $\mathcal{B}(v) = \varphi \circ v$, we may write $\mathcal{B}: \|z, n\|_{b,2} \oplus \|z, n\|_{b,2} \to \|z, m\|_{b,2}$, define by $\|v_0, v_1 - m\|_{b,2}$ $= \varphi \circ ||v_0, v_1 - m||_{b,2}.$

Since \overline{B} is linear operator, we have

 $B\{\delta \|v_0, v_1 - m\|_{h2} + \lambda \|g_0, g_1 - m\|_{h2}\}$

 $= \delta \mathcal{B} \|\nu_0, \nu_1 - m\|_{b,2} + \lambda \mathcal{B} \|\mathcal{G}_0, \mathcal{G}_1 - m\|_{b,2}$, for all $m \in \mathcal{M}$

and $\|\nu_0, \nu_1 - m\|_{b,2}$ is a linear simultaneous. proximity operator

for $\|z,m\|_{h^2}$.

Theorem 4.4: Let \mathcal{N}_2 be two – normed linear space, M closed

sub space of \mathcal{N}_2 and $\emptyset \neq Y \subseteq \mathcal{N}_2$. Then $\mathcal M$ is simultaneo. proximinal in \mathcal{N}_2 if and only if $||y, m||_{b,2}$ is simultaneo. proximinal

in $\|y, n\|_{b,2}$ for $y \in Y$ and $m \in \mathcal{M}, n \in \mathcal{N}_2$.

Proof: Assume that \mathcal{M} is simultaneo. proximinal in \mathcal{N}_2 ,

we need to prove $\| y, m \|_{b,2}$ is simultaneo. proximinal

in $\|y, n\|_{b,2}$ for $y \in Y$ and $m \in \mathcal{M}, n \in \mathcal{N}_2$.

Let $v, g \in ||y, n||_{b,2}$ for all $y \in Y$ and $n \in \mathcal{N}_2$. Since M is

simultaneo. proximinal in \mathcal{N}_2 , the for any $u \in Y$ there exists

T(u)
$$
\in \mathcal{M}
$$
 such that
\n
$$
\max \{ ||v_0(u_0,v_1(u_0)-T(u)||_{b,2}, ||g_0(u_0),g_1(u_0)-T(u)||_{b,2} \}
$$
\n \leq max $\{ ||v_0(u_0,v_1(u_0)-w||_{b,2}, ||g_0(u_0),g_1(u_0)-w||_{b,2} \}$,
\nfor all $w \in G$. In particular it holds for any $(u) \in G$,
\n $w \in || y, m ||_{b,2}$. By Axiom of choice, the exists $T \in || y, m ||_{b,2}$.
\nHence $\max \{ ||v_0, v_1 - T||_{b,2}, ||g_0, g_1 - T||_{b,2} \}$
\n \leq max $\{ ||v_0, v_1 - w||_{b,2}, ||g_0, g_1 - w||_{b,2} \}$, for all $w \in || y, m ||_{b,2}$.
\nThen $\max \{ ||v_0, v_1 - T||_{b,2}, ||g_0, g_1 - T||_{b,2} \}$, for all $w \in || y, m ||_{b,2}$.
\nThen $\max \{ ||v_0, v_1 - T||_{b,2}, ||g_0, g_1 - T||_{b,2} \}$ = $||v, g - m ||_{b,2}$,
\nwhich implies $|| y, m ||_{b,2}$ is simultaneous, proximinal
\nin $|| y, n ||_{b,2}$ for all $y \in Y$ and $m \in \mathcal{M}, n \in \mathcal{N}_2$, we need to prove
\n \mathcal{M} is simultaneous, proximinal in \mathcal{N}_2 .
\nLet $x_1, y_1 \in \mathcal{N}_2$. Set $v_{x_1}: Y \to \mathcal{N}_2, v_{y_1}: Y \to \mathcal{N}_2$,
\ndefine by $v_{x_1}(u) = x_1, v_{y_1}(u) = y_1$ for all $u \in Y$.
\n $||v_{y_1}: v_{x_1} - m ||_{b,2} = \sup ||y_{y_1}(u), v_{x_1}(u) - m ||_{b,2} = ||x_1, y_1 -$