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Abstract 

In this paper, we utilize a combination of the finite element method and the finite 
difference method to solve the one-dimensional nonlinear Burgers equation. The 
discretization in time was applied to construct the method, and for each time step, a system 
of nonlinear equations was obtained. To solve these equations, the inverse Cole-Hopf 
transformation was employed. The efficiency of the proposed method was demonstrated by 
comparing the numerical solutions obtained for different viscosity values with the exact 
solutions. The results showed a remarkable agreement between them. 

 

Keywords: Inverse problem, Burgers' equation, Finite element methods, Cole-Hopf 
transformation. 

 

1. Introduction: 

In this paper we will consider the one-dimensional viscid Burgers equation to be the 
nonlinear parabolic partial differential equation (PDE) 

 

where  is the kinematic viscosity. This is the simplest PDE combining both nonlinear 
propagation effects and diffusive effects. When the term  is removed from (1.1) we 
obtain that called the inviscid Burgers equation which is a hyperbolic PDE. 

Bateman introduced this equation in 1915 [1]. Bateman utilized this equation as a 
representation of the movement of a viscous fluid in situations where the viscosity 
approaches zero. He derived two distinct types of steady state solutions for the problem of 
an infinite domain. More than thirty years later, Johannes M. Burgers [3] introduced the 
equation (1) aiming to create a straightforward mathematical model that could capture the 
essential characteristics observed in turbulent hydrodynamic flows. Consequently, the 
equation became known as the Burgers equation due to its association with Burgers' efforts .
Despite advancements in concepts and techniques for solving nonlinear partial differential 
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equations, obtaining Analytical Solutions for Diffuseness Problems remains challenging. 
Therefore, Numerical Solutions are often considered the most effective approach for 
studying the characteristics of these equations [11]. Therefore, it is essential to examine the 
characteristics of the Burger's equation in order to understand the fundamental equations of 
fluid mechanics. 

Over the past few decades, numerous researchers have been interested in obtaining 
solutions for the Burger's equation through various analytical and numerical methods. These 
methods include the Cole-Hopf transformation introduced by Cole in 1951[5], Fletcher's in 
1983 [6], the finite element method implemented by Cecchi and others in 1996[4], and the 
explicit finite difference method used by Kutluay and others in 1999[9], Ozis and others in 
2003[13], the finite element method using various forms of cubic spline-B functions by 
Kutluay and others in 2004[38], and the finite difference method implemented by Hassanien 
and others in 2005[7], the implicit finite difference method applied by Kadalbajoo and 
others in 2005[8],  Liao in 2008[12], Jiang and Wang in 2010 [19], the implicit logarithmic 
finite difference method developed by Srivastava and others in 2013[15], Bhrawy and 
Others in 2015 [2], and Tamsir and others in 2016[16]. 

This study utilized a combination of the finite element method and the finite 
difference method, which were applied to discretize the nonlinear Burgers equation in time 
with the inverse problem situation. The inverse Cole-Hopf transformation was employed to 
solve the equation. The obtained numerical results were compared to Cole's exact solution 
for  of viscosity value based on   errors. The comparison revealed that the 
numerical results were highly satisfactory. 

2. Problem Statement:  

This study will focus on considering the viscous one-dimensional Burgers equation, 
which is given as follows: 

 

Where  belongs to the spatial domain ,  belongs to the time interval  and  

s.t  is the Reynold number. The equation is subject to a boundary condition  on the 

boundary  and an initial condition  at time . 

2.1 Cole-Hopf Transformation [5]: 

An Important work was done by Cole and Hopf by finding a substitution for Burgers' 
equation that converts (2.1) into the linear heat equation. This transformation, known as the 
Cole-Hopf transformation, is expressed as follows: 
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By applying the Cole-Hopf transformation, where  is a non-zero function, Burgers' 
equation can be transformed into the simplified form: 

 

Nevertheless, this transformation introduces complexities in defining the boundary 
conditions and initial conditions, as we will soon observe. However, despite these 
challenges, the Cole-Hopf transformation enables us to obtain exact solutions for the one-
dimensional Burgers' equation in various general scenarios.  

2.2 Exact Solution [18]: 

In this case, let's specifically consider homogeneous Dirichlet-boundary conditions as 
follows: 

 

Through the utilization of the Cole-Hopf transformation, we obtain the following form:  

  

Consequently, our own boundary conditions transformed into Neumann-conditions: 

 

 

The following are the results that we obtain after solving the separable ordinary differential 
equations (ODEs) for our initial conditions: 

 

All that together give us: 

 

in such a way  forms the left boundary of . 
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Now, we are able to derive an exact solution that can be utilized to assess and validate the 
accuracy of our numerical methods. Specifically, we select the spatial domain  to be the 
interval  for this purpose. 

Considering the boundary conditions, 

 

We can express,  

 

By making this specific choice, the selected solution satisfies the boundary condition and 
provides a closed-form expression for the initial condition . 

We obtain the following result by utilizing of the Cole-Hopf transformation 

 

and the accompanying initial condition is: 

 

 

3. Numerical Methods:  

This section will discuss the different methods used to address problem (2.1), which 
fall under the category of finite element approaches. 

 

3.1 Finite Element Methods:  

On our linearized equation (2.4), we are currently in the stage of using the FEM, with 
the methodology that was offered by Öziş [13]. This strategy is not only very easy to put 
into practice, but it also avoids the requirement for utilizing any further linearization 
methods for (2.3). Yet, since we are going to apply the Cole-Hopf transformation (2.2) to 
determine  even after solving the approximation , in case of, this strategy 
going to typically miss one-degree of precision owing to the derivative-term (2.2). As a 
consequence of this, higher order FEM approaches, such as those addressed in this work, are 
required. According to the author's best knowledge and understanding, a novel approach for 
solving (2.3) may be found by first solving (2.4) with higher order techniques, and then 
applying (2.2) thereafter. 
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3.1.1 Weak Form: 

Considering any random test function, such as  multiplied by (2.4), 
such that  indicates the whole of the space occupied by functions that are (piecewise 
continuous) along with no less than a single (piecewise continuous) derivative over the (0, 1) 
domain. Our BCs were more natural than necessary, because we are dealing with 
homogeneous Neumann-conditions. Which it gives  

 

By part integration, we have 

 

For the BC , we are having 

 

(2.7) indicates a weak solution to (2.4). To put it another way, a classical solution to 
equation (2.4) will fulfil the requirements of equation (2.7), but a solution to equation (2.7) 
will only fulfil the requirements of equation (2.4) when it is continuous. 

3.1.2 Discretization: 

       Our domain is discretized using N equidistant intervals. Next, we proceed by 
inserting  equidistant points into the middle of every interval, resulting in the 
formation of the points , where  ranges from 0 to . It's important to note that  
represents the degree of the polynomial space employed in our finite element approximation. 
Now, we proceed by selecting a limited collection of elements from  denoted as 
a finite-dimensional subset, then we opt for a set of piecewise polynomials with a degree of 

 for to serve as our basis. We represent our basis-functions as  where each 

 corresponds to a point  and spans over one or two intervals. Specifically, the basis-
functions that correspond to the endpoints of the initial N-intervals extend their influence 
over both neighboring intervals, except for and , which do not extend beyond the 

domain (0,1). On the other hand, each basis-function  associated with an interior point 
only affects the original interval in which  is located. 

Moreover, we specify that our basis is nodal, meaning that 
to the support of . Therefore, 

we could write  
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in fact, each coefficient  corresponds to our model's approximation at  during time  
is an obvious advantage of the above formulation, . 

 

 

3.1.3 Matrix Form: 

      Now, the formulation represented by equation (2.7) is now transformed into,  

 

With rewriting, we get 

 

Now, if we consider  as a basis-function , it gives us 

 

     Moreover, in case we substitute , we can derive the 

following set of equations: 

 

Therefore, the solution to issue (2.7) is obtained via solving of an ordinary differential 
equation. Where  is the  and  is the . Through the 
selection of our basis, it can be demonstrated that the mass and stiffness matrices we utilize 
exhibit sparsity, positive definiteness, and symmetry [13]. We employ Gaussian-quadrature 
with an order of  in solving the mentioned integrals to accurately calculate these 
matrices [14]. 

3.2.4 Methods for Cole-Hopf Transformation: 
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After obtaining  by solving equation (2.4), it is necessary to utilize the inverse 

Cole-Hopf transformation to determine  using the equation  

 

Öziş [13] proposes an approximation for  using the central difference method, which is 

known for its second-order accuracy. 

 

When considering , specifically when dealing with piecewise linear functions, 

this option is highly commendable. However, when , selecting this option imposes a 

restriction on our accuracy, limiting it to the second order within the spatial domain. 
Consequently, this nullifies the benefits gained from utilizing polynomials of higher orders. 
Instead, in this investigation, for , we approximate  by utilizing the finite 

element derivative  

 

The level of approximation is accurate until the order . Hence, we anticipate achieving an 

overall accuracy of  order in the  norm and  order in the  norm.  

 

3. Numerical Implementation: 

Our analysis will primarily concentrate on employing the exact solution (2.5) and the 
initial condition (2.6) to assess and examine various numerical methods, which we will 
discuss in greater detail below. We will then present results that summarize our comparison 
of these methods at , equivalent to a Reynolds number of 10. This setting is 
potentially more challenging numerically compared to . 

For the different methods on the spatial grid spacing  and the temporal grid spacing 
 over the time required to identify the solution, the  errors are given as follows: 
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Here  is the approximate solution and  the exact solution at the final-time , and 

considering the grid points . Gaussian quadrature of degree  is employed as a method to 
integrate and compute the  and errors over each interval, to measure the accuracy of 
our solutions and ensure reliable and precise results for each of our methods. 

3.1 Discrete in Time Method: 

      In order to solve this Ordinary Differential Equation (ODE), we are going to 
investigate two different approaches. One approach is to divide the problem into discrete 
intervals in both time and space. 

Therefore, we will approximation  and  with finite-difference 

 We have 

 

Such that  is the factor of weight that representing: 

 , the explicit 1th-order forward-Euler method with T is stable conditionally.  
 , the implicit 1th-order with dissipative backward-Euler method in time is 

stable unconditionally. 
 , the implicit 2th-order Crank-Nicolson method with T is stable unconditionally. 

      We have chosen to exclusively employ the Crank-Nicolson method in this study due 
to our aim of achieving a significant level of precision. 

At this point, we are able to write down our equation.  

  such that    and   

Hence, by calculating  only once, we can progress our system in time by 

solving the equation , where . Due to the sparsity, 
symmetry, and positive definiteness of matrix , we can employ a specialized Cholesky 
solver designed for sparse matrices to effectively calculate the desired solution. The chol(A, 
'lower') command in  offers an effective solver for this objective. The following 
tables show the results obtained by this method:  
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1.25E-01 1.25E-01 3.90E-02 — 6.66E-04 — 308.6
6.25E-02 6.25E-02 1.98E-02 0.974 1.66E-04 2.004 507.9
3.12E-02 3.12E-02 1.00E-02 0.989 4.15E-05 1.999 897.7
1.56E-02 1.56E-02 5.01E-03 0.996 1.04E-05 1.999 1777.7
7.81E-03 7.81E-03 2.51E-03 0.998 2.60E-06 1.999 3748
3.90E-03 3.90E-03 1.25E-03 0.999 6.50E-07 1.999 8191.1
1.95E-03 1.95E-03 6.28E-04 0.999 1.62E-07 1.999 23711.6
9.76E-04 9.76E-04 3.14E-04 0.999 4.06E-08 1.999 109360.9  

Table 3.1:  error and convergence rates for the quadratic DFEM method 

5.00E-01 3.00E-02 7.80E-04 — 2.54E-05 — 303.1
2.50E-01 3.00E-03 3.74E-05 4.38 6.56E-07 5.278 482.7
1.25E-01 9.00E-04 1.82E-06 4.36 2.05E-08 4.998 927.5
6.25E-02 1.00E-04 1.10E-07 4.044 5.64E-10 5.186 2648
3.12E-02 3.00E-05 6.93E-09 3.997 1.96E-11 4.847 19683.9  

Table 3.2:  error and convergence rates for the quintic DFEM method 

 

1.00E+00 3.12E-02 5.55E-04 — 2.10E-05 — 489.1
5.00E-01 1.95E-03 1.06E-05 5.707 1.82E-07 6.846 777.8
2.50E-01 1.22E-04 1.92E-08 9.107 2.25E-10 9.66 1405.8
1.25E-01 1.52E-05 2.78E-10 6.116 9.34E-12 4.594 3854.5
6.25E-02 6.10E-05 1.58E-10 0.816 3.65E-11 -1.968 10065.6  

Table 3.3:  error and convergence rates for the octic DFEM method  

It is observed that the DFEM linear approach attains rates of  in the  norm and  in 
the  norm. This outcome can be attributed to the utilization of a second-order accurate 
approximation of θx in the inverse Cole-Hopf transform discussed in section 3.2.4. 

3.2 Continuous in Time Method:  

Our second approach involves treating our ordinary differential equation ODE to be a 
continuous problem. Instead of discretizing our problem, we are able to solve the follows 
ODE 

 

directly by utilizing an ODE solver to find a solution for . Our solver, out of necessity, 
will approach the ODE discretely. However, unlike the finite difference in time method, we 
will employ adaptive step sizes, eliminating the need to directly construct a time grid. In 
doing so, we enable greater flexibility in our approach to solving the ODE. To accomplish 
this, we make use of the ODE solvers provided in : 

 The Explicit Runge-Kutta (4,5) Dormand-Prince, non-stiff ode45, 



 Journal of Natural and Applied Sciences URAL                                                     No: 3, Vol : 1\July\ 2023    

)199 ( 
 

 The Explicit Runge-Kutta (2,3) Bogacki and Shampine, non-stiff ode23, 
 The Adams-Bashforth-Moulton, non-stiff ode113, 
 The Numerical Differentiation Formula, stiff ode15s, 
 The Modified Rosenbrock formula of order 2, stiff ode23s. 

Our experiments with numerical investigations demonstrate that when addressing this 
problem, ode15s yields the most optimal results. 

The following tables show the results obtained by this method: 

1.25E-01 1.00E-04 3.89E-02 — 6.44E-04 — 198.8
6.25E-02 1.00E-04 1.98E-02 — 1.61E-04 1.999 325.1
3.12E-02 1.00E-05 1.00E-02 0.973 4.04E-05 1.995 582.9
1.56E-02 1.00E-05 5.01E-03 0.989 1.04E-05 1.956 1131.3
7.81E-03 1.00E-06 2.51E-03 0.995 2.57E-06 2.017 2261.3
3.90E-03 1.00E-07 1.25E-03 0.998 6.36E-07 2.016 5180.5
1.95E-03 1.00E-07 6.28E-04 0.999 1.69E-07 1.909 13948.4
9.76E-04 1.00E-08 3.14E-04 0.999 3.97E-08 2.094 65447.1  

Table 3.4:  error and convergence rates for the quadratic CFEM method 

 

1.00E+00 1.00E-04 6.98E-03 — 4.13E-04 — 177.2
5.00E-01 1.00E-05 7.79E-04 3.164 2.26E-05 4.189 234
2.50E-01 1.00E-07 3.74E-05 4.379 6.26E-07 5.177 377.6
1.25E-01 1.00E-08 1.82E-06 4.36 1.74E-08 5.166 692.8
6.25E-02 1.00E-10 1.10E-07 4.044 5.36E-10 5.024 1271.4
3.12E-02 1.00E-11 6.93E-09 3.996 3.77E-11 3.83 2434.3
1.56E-02 1.00E-12 4.41E-10 3.973 3.92E-12 3.265 5273.7
7.81E-03 1.00E-13 2.03E-10 1.119 2.10E-12 0.901 18951.3   

Table 3.5:  error and convergence rates for the quintic CFEM method 

 

1.00E+00 1.00E-05 5.54E-04 — 1.88E-05 — 364.5
5.00E-01 1.00E-07 1.06E-05 5.704 1.85E-07 6.662 556.5
2.50E-01 1.00E-10 1.92E-08 9.108 1.88E-10 9.946 967.5
1.25E-01 1.00E-13 1.79E-10 6.75 1.08E-12 7.443 1862.4
6.25E-02 1.00E-13 8.50E-11 1.074 7.23E-13 0.583 3657.1
3.12E-02 1.00E-13 3.17E-10 -1.902 4.85E-12 -2.746 7668.8  

 Table 3.6:  error and convergence rates for the octic CFEM method 

The following figure presents the exact solution for equation (2.5). 
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Figure 3.1: Exact solution of Eq. (2.5) 

The following figure illustrates an approximate solution using the CFEM method, with 

: 

 

Figure 3.2: Approximate solution of Eq. (2.5) 

Due to the similarity in appearance between the exact solution and the approximate solution, 
as demonstrated in figures 3.1 and 3.2, the discrepancy is illustrated in figure 3.3 using the 

CFEM method, with : 
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Figure 3.3: Log error of approximation versus exact solution for Eq. (2.5) with  

 

For each of the methods, there comes a time when using a larger (  or ) the 

accuracy diminishes due to the effects of numerical round-off. Figure 3.4 illustrates this 

scenario, where the scenario remains consistent with Figure 3.3 but with a . It is 

important to observe how the presence of numerical noise becomes more significant in this 
case. 

 

Figure 3.4: Log error of approximation vs exact solution for Eq. (2.5) with   

Please keep in mind that only the most optimal solution in terms of time and numerical 
accuracy is presented for each method. Conversely, the Finite Element Methods (FEM) are 
reaching a convergence rate close to or at  in the  norm and  in the  norm. This 

demonstrates a more precise balance between accuracy and the required time for solving the 
model. Furthermore, it is evident that we are achieving convergence rates that align with the 
expected outcomes specified for each of the aforementioned methods. 
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Conclusion 

in this work, we focused on studying controlling inverse problem of a viscous fluid flow 
through the implementation of the simple nonlinear 1D viscous Burgers' equation. we have 
developed and compared different methods, specifically finite element techniques along with 
finite difference methods prior to implementing the inverse Cole-Hopf transformation (2.2). 
Based on our results, it is evident that our finite element methods, particularly those based 
on C-FEM, exhibit an exceedingly high level of accuracy in a relatively short period of time. 

It is important to note that there are a couple of downsides associated with our methodology: 

 there is a slight loss of one degree of accuracy. However, this drawback is negligible 
when dealing with polynomials of very high degrees, as the impact on the overall 
precision is minimal. 

 the treatment of boundary and initial conditions becomes more complicated. 

it is certainly worthwhile to dedicate future research to exploring the other techniques 
commonly used for regularization in inverse problems. 
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