ISSN (Print): 2958-8995 ISSN (Online): 2958-8987

Doi: 10.59799 /APPP6605

Some Grill of Nano Topological Space

Ekram A. Saleh^{1, *}, Leqaa M. Saeed Hussein², Taha Hameed Jasim Al-Douri³

 ¹Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq.
²Department of Mathematics, College of Basic Education, University of Telafer, Mosul, Iraq.
³Department of Mathematics, College of Computer Sciences and Mathematics, University of Tikrit, Tikrit, Iraq
*Corresponding author: <u>ekram.math@uomosul.edu.iq</u>

Some Grill of Nano Topological Space

Ekram A. Saleh^{1, *}, Leqaa M. Saeed Hussein², Taha Hameed Jasim Al-Douri³

¹Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq.

- ²Department of Mathematics, College of Basic Education, University of Telafer, Mosul, Iraq.
- ³Department of Mathematics, College of Computer Sciences and Mathematics, University of Tikrit, Tikrit, Iraq

*Corresponding author: ekram.math@uomosul.edu.iq

Abstract. In this work, we made a concept game of \mathfrak{S} -nano g-open sets "employing the notion of grill nano topological space, or $G(NT_i.\mathfrak{S})$, where $i = \{0.1.2\}$. The relationships between various kinds of games have been researched with the use of numerous figures and propositions while providing similar examples.

Keywords. $\mathfrak{S}Ng$ -closed set, $\mathfrak{S}Ng$ -open set, $G(NT_0, \mathfrak{S})$, $G(NT_1, \mathfrak{S})$ and $G(NT_2, \mathfrak{S})$.

1. Introduction

Choquet [1] studied grill (\mathfrak{S}) on a topological space (X, τ) that has already been explored. In [2] a nano topological space was defined using lower, upper, and boundary conditions. In [3] a game was studied and the concepts of grill Ti-space where $i = \{0.1.2\}$ and denoted by G(Ti.X). In [4] introduced grill g-open set on the game of the generalized, grill-g-closed set and insert $\mathfrak{S} - g - Ti$ -space with $i = \{0.1.2\}$ were examined, and a game $G(T_i, \mathfrak{S})$ was defined. In [5] introduced the game denoted by (G) between "two "players Å and $\mathcal B$, the range of options $J_1, J_2, J_3, ..., J_n$ for every Player. These possibilities are referred to as moves. In [6,7] studied a game is defined as alternating when one of the Players Å chooses one of the options $J_1, J_2, J_3, ..., J_n$. Can be chosen by \mathcal{B} when the choices of Å are Known. In alternating games, the player must determine who starts the game. In this paper provided the sorts of games through a given set. The gaining and losing strategy of any player \mathcal{P} in the game G, if \mathcal{P} has a gaining strategy in G denoted by $(\mathcal{P} \hookrightarrow G)$. On the other hand, if \mathcal{P} doesn't have a gaining strategy denoted by $(\mathcal{P} \hookrightarrow G)$. if \mathcal{P} has a losing strategy denoted by $(\mathcal{P} \leftrightarrow G)$ and if \mathcal{P} doesn't have a losing strategy denoted by (𝒫 ↔ 𝒪).

2. Preliminaries

Definition 2.1 [2] Let R be an equivalence relation on U known as the "indiscernibility relation," and let U be a non-empty finite set of objects termed the universe. Then different equivalence classes for U are created. It is argued that elements in the same equivalence class are indistinguishable from one another.

"The approximation space is referred to as the pair (U.R). Let $X \subseteq U$ ". The set of all objects that can be categorically identified as X with regard to R is the lower approximation of X with respect to R, and it is denoted by " $L_R(X)$. To put it another way, $L_R(X)=\bigcup_{x\in U} \{R(x): R(x)\subseteq X\}$, where R(x) stands for the equivalence class established by x U.

• According to $U_R(X)$, "the set of all objects that can possibly be classified as X with respect to R and" it is the upper approximation of X with respect to R. This is,

 $U_R(X) = \bigcup_{x \in U} \{ R(x) \colon R(x) \cap X \neq \varphi \}$

• The collection of all objects that cannot be classified as either X or not-X with regard to R is known as the boundary region of X with respect to R and is indicated by the symbol $B_R(X)$ thus $B_R(X) = U_R(X) - L_R(X)$. is defined.

Definition 2.2 [2] The set of all objects that may conceivably be categorized as X with respect to R and it, as denoted by $U_R(X)$, is the upper approximation of X with regard to R. That is, suppose U is a "universe, R be an equivalence relation on U and" $\tau_R(X) = \{\varphi, U, L_R(X), U_R(X), B_R(X)\}$ where X agree with the following axioms.

- $U. \varphi \in \tau_R(X)$
- The union of the elements of any sub-collection of $\tau_R(X)$ is in $\tau_R(X)$
- The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

Then $\tau_R(X)$ is called the Nano topology on U with respect to X. The space $(U, \tau_R(X))$ is the Nano topological space. The elements of $\tau_R(X)$ are called Nano open sets.

Definition 2.3 [1,8] A nonempty collection \mathfrak{S} of nonempty subsets of a topological space \mathfrak{X} is named a grill if

- $A \in \mathfrak{S}$ and $A \subseteq B \subseteq \mathfrak{X}$ then $B \in \mathfrak{S}$.
- $A \cdot B \subseteq \mathfrak{X}$ and $A \cup B \in \mathfrak{S}$ then $A \in \mathfrak{S}$ or $B \in \mathfrak{S}$ [6].

Let \mathfrak{X} be a nonempty set. Then the following families are grills on \mathfrak{X} . [1,67]

Definition 2.4 [2] In space $(\mathfrak{X}, T, \mathfrak{S})$, let $D \subseteq \mathfrak{X}$. D is named to be grill-*g*- closed set denoted by " \mathfrak{S} - *g*-closed", if (D-U) $\notin \mathfrak{S}$ then, $(cl(D) - U) \notin \mathfrak{S}$ where, $U \subseteq \mathfrak{X}$ and $U \in t$ Now, D^c is a grill-*g*- open set denoted by \mathfrak{S} -*g*-open". The family of all " \mathfrak{S} - *g*-closed" sets denoted by $\mathfrak{S}gC(\mathfrak{X})$. The family of all " \mathfrak{S} -*g*-open" sets denoted by $\mathfrak{S}gO(\mathfrak{X})$

Definition 2.5 [4] The space $(\mathfrak{X}, T, \mathfrak{S})$ is a \mathfrak{S} -g- \mathcal{T}_0 -space shortly \mathfrak{S} -g- \mathcal{T}_0 -space" if for each $m \neq \mathfrak{o}$ and $m.\mathfrak{o} \in X$, there exist $U \in \mathfrak{S} gO(\mathfrak{X})$ whenever, $m \in U$ and $\mathfrak{o} \notin U$ or $m \notin U$ and $\mathfrak{o} \in U$.

Definition 2.6 [4] The space $(\mathfrak{X}. T. \mathfrak{S})$ is a \mathfrak{S} g \mathcal{T}_1 , space shortly \mathfrak{S} g- \mathcal{T}_1 -space" if for each $m, \mathfrak{o} \in X$ and $m \neq \mathfrak{o}$. Then there are \mathfrak{S} g-open sets U_1, U_2 whenever $m \in U_1$, $\mathfrak{o} \notin U_1$, and $\mathfrak{o} \in U_2, m \notin U_2$.

Definition 2.7 [4] The space $(\mathfrak{X}, T, \mathfrak{S})$ is a $\mathfrak{S}g \mathcal{T}_2$ -space shortly " $\mathfrak{S}g \mathcal{T}_2$ -space" if for each $m \neq \mathfrak{o}$. There are $\mathfrak{S}g$ -open sets U_1, U_2 whenever me $m \in U_1, \mathfrak{o} \in U_2, U_1 \cap U_2 = \emptyset$

3. Grill Nano g-open -on Game

Definition 3.1 Let $(U,\tau_R(x),\mathfrak{S})$ be grill Nano topological space and $E \subseteq U$, E is called "grill Nano -g-closed set" denoted by $\mathfrak{S}Ng$ -closed if $(E-G) \notin \mathfrak{S}$ thans $(CL(E) - G) \notin \mathfrak{S}$ where $G \subseteq U$ and $G \in \tau_R(x)$. E^c as "grill Nano -g-open set denoted by $\mathfrak{S}Ng$ -open". The family of all "grill Nano -g-closed set denoted by $\mathfrak{S}NgC(U)$. The family of all "grill Nano -g-open set" denoted by $\mathfrak{S}NgO(U)$.

Example 3.2 Let $(U,\tau_R(x),\mathfrak{S})$ be grill Nano topological space $U = \{a_1, a_2, a_3\}$. $U \land R = \{\{a_1\}, \{a_1, a_3\}\} X = \{a_1, a_3\} \subseteq U$. $\tau_R(x) = \{\emptyset, U, \{a_1\}, \{a_2\}, \{a_1, a_2\}\}$ $\tau_R(x) - closed = \{\emptyset, U, \{a_2, a_3\}, \{a_1, a_3\}, \{a_3\}\}$ $\mathfrak{S} = \{U, \{a_1\}, \{a_1, a_2\}, \{a_1, a_3\}\}$ Then $\mathfrak{S}NgC(U) = P(X) / \{\emptyset\}$ and $\mathfrak{S}NgC(U)$ is $(\mathfrak{S}NgO(U))^c$

Remark 3.3 For any $(U, \tau_R(x), \mathfrak{S})$ then

- Each Nano closed set is a $\Im Ng$ closed set
- Each Nano open set is a $\Im Ng$ -open set.

Convers above Remark is not true. Shows from exam 3.2

- $\{a_1\}$ is $\mathfrak{S}NgC$ but $\{a_1\}$ is not Nano closed set.
- $\{a_1, a_3\}$ is $\Im NgO$ set but $\{a_1, a_3\}$ is not Nano open.

Definition 3.4 Let $(U,\tau_R(x),\mathfrak{S})$ be grill Nano $g - T_0$ space denoted by $\mathfrak{S}Ng - T_0$ space if for every $i \neq j$ and $i \neq j \in U . \exists G \in \mathfrak{S}NgO(U)$ whenever $i \in Gand j \notin G \text{ or } i \notin Gand j \in G$.

Definition 3.5 Let $(U,\tau_R(x),\mathfrak{S})$ be grill Nano $g - T_1$ space denoted by $\mathfrak{S}Ng - T_1$ space if for every $i \neq j$ and $i,j \in U . \exists \mathfrak{S}NgO \ sets \ G_1 . G_2$ whenever $i \in G_1 \ and \ j \notin G_1 \ and \ i \notin G_2 . j \in G_2$

Definition3.6 Let $(U,\tau_R(x),\mathfrak{S})$ be grill Nano $g - T_2$ space denoted by $\mathfrak{S}Ng - T_2$ space if for every $i \neq j$ then are $\mathfrak{S}NgO \operatorname{sets} G_1 \cdot G_2$ whenever $i \in G_1$ and $j \in G_2$ and $G_1 \cap G_2 = \emptyset$.

Definition 3.7 Let $(U,\tau_R(x),\mathfrak{S})$ be a grill Nano topological space, $G(NT_0,\mathfrak{S})$ is a game that is defined as follows :In the m-th inning, the two players A and B will play an inning for each natural number., the prime race, A will select $a_m \neq b_m$, whenever a_m, b_m belong to U. Next B choose NG_m belong to $\mathfrak{S}NgO(U)$ such that a_m belong to NG_m and b_m , not belong to NG_m , B get in the game, whenever $\mathcal{B} = \{NG_1, NG_2, \dots, NG_m...\}$ satisfies that for all $a_m \neq b_m$ in U $\exists NG_m$ belong to P such that a_m belong to NG_m and $b_m \notin NG_m$. Other hand A gets.

Example 3.8 Let $G(NT_0.\mathfrak{S})$ be a game $U = \{a_1, a_2, a_3\}$ and $U/R = \{\{a_2, \}, \{a_1, a_3, \}\}$ $X = \{a_1, a_2\} \subseteq U$ then $\tau_R(x) = \{\emptyset, U, \{a_2, \}, \{a_1, a_3, \}\}$ $\tau_R(x) - \text{closed} = \{\emptyset, U, \{a_1, a_3, \}, \{a_2, \}\}, \mathfrak{S} = \{U, \{a_1, \}, \{a_1, a_2, \}, \{a_1, a_3, \}\}$ • Then $\mathfrak{S}NgC(U) = \{U, \emptyset, \{a_1, \}, \{a_2, \}, \{a_1, a_2, \}, \{a_1, a_3, \}\}$

• $\mathfrak{S}NgO(U) = \{ \emptyset. U, \{a_2, a_3\}, \{a_1, a_3\}, \{a_3\}, \{a_2\} \}$

Then in the first race A shall choose $a_1 \neq a_2$ whenever $a_1 \cdot a_2 \in U$ following B choose $\{a_2, a_3\} \in \mathfrak{S}NgO(U)$ such that $a_2 \in \{a_2, a_3\}$ and $a_1 \notin \{a_2, a_3\}$ in the other race A shall choose $a_1 \neq a_3$ whenever $a_1 \cdot a_3 \in U$ following B choose $\{a_2, a_3\} \in \mathfrak{S}NgO(U)$ such that $a_2 \in \{a_2, a_3\}$ and $a_1 \notin \{a_2, a_3\}$ in the tertiary race, A shall choose $a_2 \neq a_3$ whenever $a_2 \cdot a_3 \in U$ following B choose $\{a_1, a_3\} \in \mathfrak{S}NgO(U)$ such that $a_3 \in \{a_1, a_3\}$ and $a_2 \notin \{a_1, a_3\}$ B get in the game ,whenever $\mathcal{B} = \{\{a_2, a_3\}, \{a_2, a_3\}\}$ satisfies that for all $a_m \neq b_m$ in $U \exists NG_m \in \mathcal{B}$ such that $a_m \in NG_m$ and $b_m \notin NG_m$ whenever $NG_m \in \mathfrak{S}NgO(U)$ so B is the getter of the game.

Theorem 3.9 Let $(U, \tau_R(x), \mathfrak{S})$ be $\mathfrak{S}NgT_0$ - space if and only if $\mathbb{B} \hookrightarrow G(NT_0, \mathfrak{S})$

Proof. since $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_0$ -space, then any choice for the primary player A in the m-th inning $a_m \neq b_m$ whenever $a_m \cdot a_m \in U$. The other it is possible to locate player B. $NG_m \in \mathfrak{S}NgO(U)$ so $\mathcal{B} = \{ NG_1, NG_2, \dots, NG_m, \dots \}$ is the gaining strategy for B. Contrary to lucid.

Theorem 3.10 The space $(U, \tau_R(x), \mathfrak{S})$ is a $GNgT_0$ - space if and only if. there is a $\mathfrak{S}Ng - closed$ set containing only one of the items $a \neq b$.

Proof. Suppose that two points are a and b. belong to U with $a \neq b$ since U is $\Im NgT_0$ - space $\exists G \text{ is } a \ \Im Ng - open$ set contain only one of them ,therefore (U - G) is $\Im Ng - closed$ set contain the other one .Contrary to Suppose that a and b are two points belong to U with $a \neq b$. $\exists H \text{ is } a \ \Im Ng - closed$ set contain only one of them ,therefore (U - H) is $\Im Ng - open$ set contain the other one .

Corollary 3.11 Let $(U,\tau_R(x),\mathfrak{S})$ be a grill Nano topological space, $\mathbb{B} \hookrightarrow G(NT_0,\mathfrak{S})$ if and only if, for each $a \neq b$ of $U \exists H \in \mathfrak{S}NgO(U)$ such that $a \in H$ and $b \notin H$. *Proof.* Suppose that $a \neq b$ with $a, b \in U$.since $\mathbb{B} \hookrightarrow G(NT_0,\mathfrak{S})$ then by Theorem 3.9 the space $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_0$ - space therefore theorem 3.10 is applicable. Contrary to: by theorem 3.10 the grill Nano topological-space $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_0$ - space, therefore Theorem 3.9 is applicable.

Theorem 3.12 $(U,\tau_R(x),\mathfrak{S})$ be not a $\mathfrak{S}NgT_0$ - space iff $A \hookrightarrow G(NT_0,\mathfrak{S})$. **Proof.** Of the m-th race A of $G(NT_0,\mathfrak{S})$ choose $a_m \neq b_m$ whenever $a_m \cdot b_m \in U$. B of $G(NT_0,\mathfrak{S})$ cannot be founder G_m is a $\mathfrak{S}Ng$ – open set contain only one point of them, because $(U,\tau_R(x),\mathfrak{S})$ be not a $\mathfrak{S}NgT_0$ - space then $A \hookrightarrow G(NT_0,\mathfrak{S})$ Contrary to lucid.

Definition 3.13 Let $(U,\tau_R(x),\mathfrak{S})$ be a grill Nano "topological space", and describe the game $G(NT_1,\mathfrak{S})$ as follows: the two players A and B compete in a race for all natural numbers, with the m-th race, the prime round, being the most difficult. A shill picks $a_m \neq b_m$, whenever $a_m \cdot b_m$ belong to U. Therefore B choose G_m and H_m , belong to $\mathfrak{S}NgO(U)$ such that $a_m \in (G_m - H_m)$, and $b_m \in (H_m - G_m)$, B get in the game whenever $\mathcal{B} = \{\{G_1 - H_1\}, \{G_2 - H_2\}, \dots, \{G_m - H_m\}, \dots\}$ satisfies that for all $a_m \neq b_m$ of $U \exists \{G_m, H_m\} \in \mathcal{B}$ such that $a_m \in (G_m - H_m)$, and $b_m \in (H_m - G_m)$, other hand A get.

Example 3.14 From Example 3.8 $\Im NgC(U) = \{U, \emptyset, \{a_1\}, \{a_2\}, \{a_1, a_2\}, \{a_1, a_3\}\}$ $\mathfrak{S}NgO(U) = \{ \emptyset, U, \{a_2, a_3\}, \{a_1, a_3\}, \{a_3\}, \{a_2\} \}$

Then in the prime race A shall choose $a_1 \neq a_2$ whenever a_1 and $a_2 \in U$ therfore B choose $\{a_2, a_3\}$ and $\{a_1, a_3\} \in \mathfrak{S}NgO(U)$) such that $a_1 \in (\{a_1, a_3\} - \{a_2, a_3\})$ and $a_2 \in (\{a_2, a_3\} - \{a_1, a_3\})$ in the other race A shall choose $a_1 \neq a_3$ whenever a_1 and $a_3 \in U$ therfore B can't find $G_m \cdot H_m \in \mathfrak{S}NgO(U)$, such that $a_1 \in (G_m - H_m)$ and $a_3 \in (H_m - G_m)$ then A get in the game.

Theorem 3.15 $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_1$ - space if and only if $B \hookrightarrow G(NT_0,\mathfrak{S})$.

Proof. Suppose that $(U,\tau_R(x),\mathfrak{S})$ be a grill Nano topological space in the prime run A shall select $a_1 \neq b_1$ whenever a_1 and $b_1 \in U$, therefore, since $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_1$ - space B can be founder $G_1.H_1 \in \mathfrak{S}NgO(U)$ such that $a_1 \in (G_1 - H_1)$ and $b_1 \in (H_1 - G_1)$ in the other race A shall choose $a_2 \neq b_2$ whenever a_2 and $b_2 \in U$ therefore can be founder $G_2.H_2 \in \mathfrak{S}NgO(U)$ such that $a_2 \in (G_2 - H_2)$ and $b_2 \in (H_2 - G_2)$ in the m-th race, A shall choose $a_m \neq b_m$ whenever a_m and $b_m \in U$ therefore B can be founder $G_m.H_m \in \mathfrak{S}NgO(U)$ such that $a_m \in (G_m - H_m)$ and $b_m \in (H_m - G_m)$. So $\mathcal{B} = \{\{G_1.H_1\}, \{G_2.H_2\}, \dots, \{G_m.H_m\}, \dots\}$ is the gaining strategy for B. Contrary to lucid

Theorem 3.16 $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_1$ - space if and only if for every point $a \neq b$ \exists two $\Im Ng$ - closed sets K_1 and K_2 such that $a \in (K_1 - K_2)$ and $b \in (K_2 - K_1)$. **Proof** Suppose that a and b are two points of U with $a \neq b$ since U is a $\Im NgT_1$ space then $\exists G_1 and G_2 are \otimes Ng - open$ sets such that $a \in (G_1 - G_2)$ and $b \in G_1$ $(G_2 - G_1)$ then $\exists \Im Ng - closed$ sets $(U - G_1)$ and $(U - G_2)$, such that $a \in$ $\{(U - G_2)\}$ $\{(U - G_1)\}$ $-(U - G_1)$ and $b \in$ $(U - G_1) = K_2.$ $-(U - G_2)$ whenever $(U - G_2) = K_1$ and Then \exists two $\Im Ng - closed$ sets $(K_1 and K_2)$ satisfy $a \in (K_1 \cap K_2^c)$ and $b \in$ $(K_2 \cap K_1^c)$ then $a \in (K_1 - K_2)$ and $b \in (K_2 - K_1)$. contrary to suppose that a and b are two points of U with $a \neq b \exists two \mathfrak{S}Ng - closed$ sets K_1 and K_2 satisfy $a \in$ $(K_1 \cap K_2^c)$ and $b \in (K_2 \cap K_1^c)$ then $\exists \mathfrak{S}NgO(U - K_1)$ and $(U - K_2)$ whenever $a \in \mathbb{C}$ $\{(U - K_2) - (U - K_1)\}$ and $b \in \{(U - K_1) - (U - K_2)\}$ whenever $(U - K_2) = G_1$ and $(U - K_1) = G_2$.

Corollary3.17 Let $(U,\tau_R(x),\mathfrak{S})$ be space, $\mathbb{B} \hookrightarrow G(NT_1,\mathfrak{S})$ if and only if for each $a_1 \neq a_2$ of $U \ K_2, K_1 \in \mathfrak{S}NgO(U)$, such that $a_1 \in (K_1 - K_2)$ and $a_2 \in (K_2 - K_1)$. **Proof.** suppose that $a_1 \neq b_1$ with $a_1 \cdot b_1 \in U$ since $\mathbb{B} \hookrightarrow G(NT_1,\mathfrak{S})$ so by-theorem 3.15 the space $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_1$ - space. So, Theorem 3.16 is, applicable. contrary to Theorem 3.15 the grill Nano topological-space $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_1$ -space so theorem 3.15 is, applicable.

Definition 3.18 Let $(U,\tau_R(x),\mathfrak{S})$ be a grill Nano topological space, $G(NT_2,\mathfrak{S})$ is a game defined as follows: In the m-th race, the prime round, the two players A and B compete in a race for each natural number. A shill picks $a_m \neq b_m$, whenever $a_m \cdot b_m$ belong to U. Therefore B choose disjoin G_m and $H_m \cdot i \cdot eG_m \cap H_m = \varphi$ belong to $\mathfrak{S}NgO(U)$ such that $a_m \in (G_m - H_m)$, and $b_m \in (H_m - G_m)$, B get in the game whenever $\mathcal{B} = \{\{G_1 - H_1\}, \{G_2 - H_2\}, \dots, \{G_m - H_m\}, \dots\}$ satisfies that for all $a_m \neq b_m$ of $U \equiv \{G_m \cdot H_m\} \in \mathcal{B}$ such that $a_m \in (G_m - H_m)$, and $b_m \in (H_m - G_m)$, other hand A get.

Example 3.19 From Example 3.8 $\Im NgC(U) = \{U, \emptyset, \{a_1\}, \{a_2\}, \{a_1, a_2\}, \{a_1, a_3\}\}$ $\mathfrak{S}NgO(U) = \{ \emptyset, U, \{a_2, a_3\}, \{a_1, a_3\}, \{a_3\}, \{a_2\} \}$

Then in the prime race A shall choose $a_1 \neq a_2$ whenever a_1 and $a_2 \in U$ therfore B can't find two disjoin $\mathfrak{S}NgO(U)$ with $a \in G_m$, $b \in H_m$ i.e., $G_m \cap H_m = \emptyset$ then A is get in the game.

Theorem 3.20 A space $(U,\tau_R(x), \mathfrak{S})$ is $\mathfrak{S}NgT_2$ - space if and only if $\mathbb{B} \hookrightarrow G(NT_2, \mathfrak{S})$. **Proof.** Suppose that $(U,\tau_R(x),\mathfrak{S})$ a grill Nano topological space in the prime race A shall choose $a_1 \neq b_1$ whenever a_1 and $b_1 \in U$ therefore .Since $(U,\tau_R(x),\mathfrak{S})$ is a $\mathfrak{S}NgT_2$ - space then B can be found G_1 and $K_1 \in \mathfrak{S}NgO(U)$ such that $a_1 \in G_1$ and $b_1 \in K_1$. $G_1 \cap K_1 = \emptyset$ in the other race A shall choose $a_2 \neq b_2$, whenever a_2 and $b_2 \in U$. Therefore B choose G_2 , $K_2 \in \mathfrak{S}NgO(U)$ such that $a_2 \in G_2$ and $b_2 \in K_2$, $G_2 \cap K_2 = \emptyset$ in the m-th race A shall choose $a_m \neq b_m$ whenever a_m and $b_m \in U$, therefore B choose G_m , $K_m \in \mathfrak{S}NgO(U)$ such that $a_m \in G_m$ and $b_m \in K_m$, $G_m \cap K_m = \emptyset$. So $\mathcal{B} = \{\{G_1, K_1\}, \{G_2, K_2\}, \dots, \{G_m, K_m\}, \dots\}$. Is the winning strategy for B. Contrary to is Lucid.

Corollary 3.21 A space $(U,\tau_R(x).\mathfrak{S})$ is a $\mathfrak{S}NgT_2$ - space if and only if A $\mathfrak{S} \mathcal{G}(NT_2,\mathfrak{S})$.

Proof. From theorem3.20 the proof is lucid.

Theorem3.22 A space $(U, \tau_R(x), \mathfrak{S})$ is not a $\mathfrak{S}NgT_2$ - space iff A $\hookrightarrow G(NT_2, \mathfrak{S})$. *Proof*: by corollary3.21 the proof is lucid

Theorem 3.23 A space $(U,\tau_R(x),\mathfrak{S})$ is not a $\mathfrak{S}NgT_2$ - space if and only if B $\mathfrak{S} \mathcal{G}(NT_2,\mathfrak{S})$. *Proof.* by theorem 3.23 the proof is lucid

Remark 3.24 For any space $(U, \tau_R(x), \mathfrak{S})$:

- If $B \hookrightarrow G(NT_{i+1}, \mathfrak{S})$ then $B \hookrightarrow G(NT_i, \mathfrak{S})$ where i = 0.1
- If $B \hookrightarrow G(NT_i, \mathfrak{S})$ then $B \hookrightarrow G(NT_i, \mathfrak{S})$ where i = 0.1

The relationships described in the Remark 3. 34 are made clearer by **Figure 1** that follows.

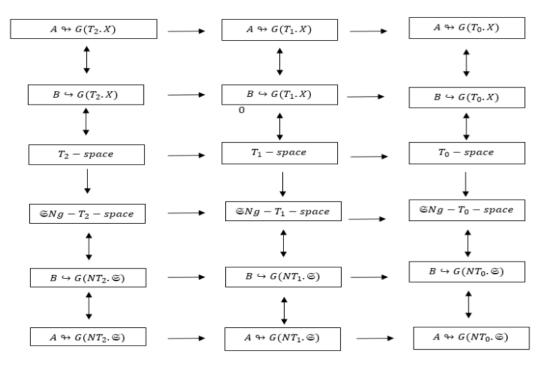


Figure 1. The relationships described in the Remark 3. 24

Any player's winning and losing tactics in in $G(T_i, X)$ and $G(T_i, \mathfrak{S})$.

Remark 3.25 For any space (*X*. *t*. *𝔅*):

- If $A \hookrightarrow G(T_i, \mathfrak{S})$ then $A \hookrightarrow G(T_{1+i}, \mathfrak{S})$, whenever $i = \{0, 1\}$
- If $B \hookrightarrow G(T_i, \mathfrak{S})$ then $B \hookrightarrow G(T_{1+i}, \mathfrak{S})$, whenever $i = \{0, 1\}$.
- If $A \hookrightarrow G(T_i, \mathfrak{S})$ then $A \hookrightarrow G(T_i, X)$, whenever $i = \{0, 1, 2\}$.

The relationships described in the Remark 3. 25 are made clearer by **Figure 2** that follows.

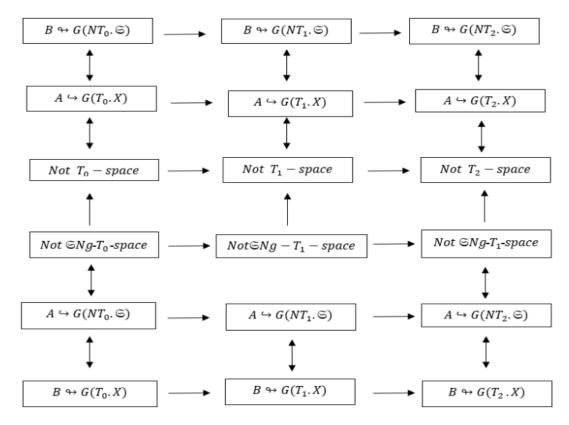


Figure 2. The relationships described in the Remark 3. 25

The winning and losing strategy whenever X is not $\Im Ng - T_i - space$ and not $T_i - space$

References

- [1] Choquet G. Sur les notions de filter et grille. *Comptes Rendus Acad. Sci. Paris*. 1947;(**224**):171-173
- Thivagar M, Richard C. On nano forms of weakly open sets. International Journal Of Mathematics And Statistics Invention. 2013; 1(1): 31-37
- [3] Gibbons M,Mike M. An introduction to game-theoretic modelling. Addison-Wesley Publishing Company.1991;26-34
- [4] Esmaeel R, Mustafa M. New Games Via Grill-Genralized Open Sets. Al-Rafidain *Journal of Computer Sciences and Mathematics*.2021; **15** (2): 115-123
- [5] Smith J. Evolutionary and theory of games. Cambridge University Press. 1976; 64(1): 41-45
- [6] Mohammad R, Esmaee R. New Games via soft-I-Semi-g-Separation axioms. *Ibn*

AL-Haitham Journal For Pure and Applied Science. 2020; 33 (4): 122-136

- [7] Rawana A, Elseidyb R. Infinite Games Via Covering Properties In Ideal Topological Spaces. International Journal of Pure and Applied Mathematics.2016; 106 (1):259-271
- [8] Roy B, Mukherjee M. On A Typical Topology Induced By A Grill. *Soochow Journal of Mathematics*.2007; **33** (4): 771 (2007)