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Abstract. In this work, we made a concept game of  -nano g-open sets “employing 

the notion of grill nano topological space, or , where . The 

relationships between various kinds of games have been researched with the use of 

numerous figures and propositions while providing similar examples.   

Keywords. -closed set, -open set, , and . 

1.  Introduction  

Choquet [1] studied grill ( ) on a topological space that has already been 

explored. In [2] a nano topological space was defined using lower, upper, and 

boundary conditions. In [3] a game was studied and the concepts of grill -space 

where  and denoted by  (  . In [4] introduced grill g-open set on the 

game of the  generalized , grill-g-closed set and   insert -space with 

  were examined, and a game  was defined.  In [5] introduced the 

game denoted by (G) between “two “players and  , the range of options 

for every Player. These possibilities are referred to as moves.In [6,7] 

studied a game is defined as alternating when one of the Players  chooses one of the 

options . Can be chosen by  when the choices of  are Known. In 

alternating games, the player must determine who starts the game. In this paper 

provided the sorts of games through a given set. The gaining and losing strategy of 

any player  in the game    , if    has a gaining strategy in  denoted by (   ). 

On the other hand, if doesn't have a gaining strategy denoted by (   ). if   has 

a losing strategy denoted by (    and if  doesn't have a losing strategy denoted 

by (   ). 

2.  Preliminaries 
 

Definition 2.1 [2] Let R be an equivalence relation on U known as the 

"indiscernibility relation," and let U be a non-empty finite set of objects termed the 

universe. Then different equivalence classes for U are created. It is argued that 

elements in the same equivalence class are indistinguishable from one another.  

 “The approximation space is referred to as the pair  Let ". The 

set of all objects that can be categorically identified as X with regard to R is 

the lower approximation of X with respect to R, and it is denoted by " . 

To put it another way, L_R (X)=_ {R(x) : R(x) ⊆ X}, where R(x) stands 

for the equivalence class established by x U. 
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 According to ), "the set of all objects that can possibly be classified as 

X with respect to R and" it is the upper approximation of  with respect to R. 

This is,  

{R(x): R (x) ∩ X  φ”} 

 The collection of all objects that cannot be classified as either  or not-  with 

regard to  is known as the boundary region of  with respect to  and is 

indicated by the symbol B R(X) thus B R(X) =  is defined. 

 

Definition 2.2 [2] The set of all objects that may conceivably be categorized as  

with respect to  and it, as denoted by , is the upper approximation of  with 

regard to . That is, suppose  is a“universe,  be an equivalence relation on U 

and” where  agree with the following 

axioms. 

  ∈   

 The union of the elements of any sub-collection of    is in     

 The intersection of the elements of any finite sub collection of   is in 

(X). 

Then  is called the Nano topology on U with respect to X. The space 

 is the Nano topological` space. The elements of   are called Nano 

open sets. 

 

Definition 2.3 [1,8] A nonempty collection  of nonempty subsets of a topological 

space  is named a grill if 

 then  .  

 and then [6]. 

Let  be a nonempty set. Then the following families are grills on . [1,67]  

 

Definition 2.4 [2] In space , let . D is named to be grill- - closed set 

denoted by "  - -closed", if (D- U)  then, (  where,  and 

 Now,  is a grill-g- open set denoted by  - -open”. The family of all "  -

closed" sets denoted by  The family of all "  - -open" sets denoted by 

 O ( ) 

 

Definition 2.5 [4] The space ( is a  - - -space shortly  - - -space" if for 

each   , there exist  whenever,  and  

or  and .  

 

Definition 2.6 [4] The space ( )is a  g ,-space shortly  g- -space" if for 

each m,   and . Then there are  -open sets ,  whenever , 

, and , . 

 

Definition 2.7 [4] The space ( ) is a  -space shortly "   -space" if for 

each  . There are  -open sets ,  whenever me , ,   

=  

3.  Grill Nano g-open –on Game 
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Definition 3.1 Let (U,    and  ,E is 

called “grill Nano - -closed set” denoted by -closed if  thans 

  where  and ,  as “grill Nano - -open  set 

denoted by  –open” . The family of all “grill Nano - -closed set denoted by 

 .The family of all “grill Nano - -open set” denoted by  . 

 

Example 3.2 Let (U, be grill Nano topological space 

 /R=   

 

 
} 

Then  )=   and  is  

Remark 3.3 For any ( , then  

 Each Nano closed set is a - closed set 

 Each Nano open set is a -open set.  

Convers above Remark is not true. Shows from exam 3.2  

 { } is  but { } is not Nano closed set. 

  is  set but  is not Nano open.     

 

Definition 3.4 Let ( , be grill Nano space denoted by -

space if for every  i j   and i j   whenever 

 

 

Definition 3.5 Let  ( , be grill Nano space denoted by -

space if for every  i j   and i j  

whenever        

 

Definition3.6 Let ( ,  be grill Nano  space denoted by -

space if for every   i j then are  whenever  

 . 

 

Definition 3.7 Let ( , be a grill Nano topological space,  is a 

game that is defined as follows :In the m-th inning, the two players A and B will play 

an inning for each natural number., the prime race, A will select , whenever 

,  belong to U. Next B choose  belong to  such that  belong to 

and , not belong to , B get in the game, whenever  ={ 

N ...} satisfies that for all  in U   belong to P such 

that  belong to  and    . Other hand A gets. 

 

Example 3.8 Let    be a game  and 

      

  then ,  

closed ,  , ,  

 Then ,  

 ,  
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Then in the first race A shall choose  whenever   following B 

choose { }   such that   { } and  { }in the other  

race  A shall choose whenever   following B choose { }  

such that   { } and  { }in the tertiary race , A shall 

choose whenever   following B choose { }  such 

that  { }and  { } B get in the game ,whenever  = 

{ } satisfies that for all  in   such that 

and  whenever  so B is the getter of the 

game . 

 

Theorem 3.9 Let ( ,  be  - space if and only if B   

Proof. since ( ,   is  a - space, then any choice for the primary player 

A in the m-th inning  whenever   The other it is possible to 

locate player B.  so  ={ N ...}is the gaining 

strategy for B . Contrary to lucid . 

 

Theorem 3.10 The space( ,   is a - space if and only if. there is an 

 containing only one of the items   . 
Proof. Suppose that two points are a and b. belong to  with  since  is 

- space  contain only one of them ,therefore 

 is  contain the other one .Contrary to Suppose that a and b 

are two points belong to  with   contain only one 

of them ,therefore is  contain the other one . 

 

Corollary 3.11 Let ( ,  be a grill Nano topological space, B   if 

and only if, for each  of   such that  

Proof. Suppose that  with  since B   then by Theorem 

3.9 the space( ,  is a - space therefore theorem 3.10 is applicable. 

Contrary to: by theorem 3.10 the grill Nano topological-space ( ,  is a 

- space, therefore Theorem 3.9 is applicable. 

 

Theorem 3.12 ( ,   be not a - space iff   . 

Proof.  Of  the m-th race A of   choose    whenever   

B of   cannot  be founder   contain only one point 

of them, because ( ,   be not a - space then    Contrary 

to lucid . 

 

Definition 3.13 Let ( ,  be a grill Nano “topological space”, and describe 

the game  as follows: the “two” players A and B compete in a race for all 

natural numbers, with the m-th race, the prime round, being the most difficult. A shill 

picks , whenever . Therefore B choose , 

belong to  such that , and ,B get in the 

game whenever  ={{  }, {  },..., {  },...} satisfies that for 

all  of   such that , and 

, other hand A get . 

 

Example 3.14 From Example 3.8 

,  
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Then in the prime  race A shall choose whenever   therfore 

B choose { }and{ } ) such that   ({ }-{ }) and 

 ({ }-{ })in the other  race  A shall choose whenever 

  therfore B can’t find  , such that   

 and   then A get in the game .  

 

Theorem 3.15 ( ,  is  a - space if and only if     . 

Proof. Suppose that ( ,  be a grill Nano topological space in the prime run A 

shall select  whenever   ,therefore ,since ( ,   is 

a - space B can be  founder   such that    

and   in the other race  A shall choose whenever  

 therefore can be  founder   such that    and 

  in the m-th  race , A shall choose whenever  

 therefore  B can be  founder   such that    

and   So  ={{  }, {  },..., {  },...} is the  gaining 

strategy for B. Contrary to lucid 

Theorem 3.16  ( ,   is a - space if and only  if  for every point   

two    such that    and  . 
Proof Suppose that a and b are two points of   with  since  is a  - 

space then   such that    and  

.then    and    , such that   

  and   

whenever  and  

Then    satisfy    and  

  then    and   contrary to suppose that a and b 

are two points of   with  two   satisfy   

 and   then  and  whenever a  

  and    whenever 

and  
Corollary3.17 Let ( ,   be space, B   if and only  if  for each   

 of   , such that    and  . 

Proof. suppose that   with      since B   so by-theorem 

3.15 the space ( ,   is a - space. So, Theorem 3.16 is, applicable. 

contrary to  Theorem 3.16 the grill Nano topological-space ( ,   is a - 

space so  theorem 3.15 is, applicable. 

 

Definition 3.18 Let ( ,  be a grill Nano topological space,  is a 

game defined as follows: In the m-th race, the prime round, the two players A and B 

compete in a race for each natural number. A shill picks , whenever 

. Therefore B choose disjoin  

belong to  such that , and ,B get in the 

game whenever  ={{  }, {  },..., {  },...} satisfies that for 

all  of   such that , and 

, other hand A get . 

 

Example 3.19 From Example 3.8 

,  
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Then in the prime race A shall choose whenever   therfore 

B can’t find two disjoin    with    ,  i.e., then 

A is get in the game. 

 

Theorem 3.20 A space ( ,   is - space if and only if B  . 

Proof. Suppose that ( ,  a grill Nano  topological space in the prime race A 

shall choose  whenever  therefore .Since( ,  is  a 

- space then B can be found  and  such that   and 

   in the other race A shall choose  ,whenever 

 .Therefore B choose  ,  such that   and  

,  in the m-th race A shall choose  whenever  

, therefore B choose  ,  such that   and   

,  . So  , },  , },  , }…….}. Is the 

winning strategy for B. Contrary to is Lucid. 

 

Corollary 3.21 A space ( ,   is a - space if and only if A  

. 

Proof. From theorem3.20 the proof is lucid. 
 

Theorem3.22 A space ( ,   is not a - space iff A    . 

Proof:  by corollary3.21 the proof is lucid 

 

Theorem 3.23 A space ( ,   is not a - space if and only if B  

  . 

Proof.  by theorem3.23 the proof is lucid 

 

Remark 3.24 For any space ( , : 

 If B    then   B    where  

 If B    then   B    where  

The relationships described in the Remark 3. 34 are made clearer by Figure 1 that 

follows. 
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Figure 1. The relationships described in the Remark 3. 24 

 

Any player's winning and losing tactics in in  and . 

 

Remark 3.25 For any space : 

 If then , whenever  
 If then , whenever . 

 If then , whenever  

   The relationships described in the Remark 3. 25 are made clearer by Figure 2 

that follows. 
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Figure 2. The relationships described in the Remark 3. 25 

 

The winning and losing strategy whenever X is not   and not 
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