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Abstract:

Many researchers in the field of functional analysis have proved the direct
theorems for approximating functions in several known spaces. As for us in this
work, we will prove inverse theorems for approximating unbounded functions
using trigonometric polynomial in weighted spaces via modulus of smoothness
functions.
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1.Introduction:There is an increasing interest in the spaces of functions with,
bounded properties in Lebesgue spaces, whose is variable exponent , and there
weighted spaces are based on homogeneous spaces .We also need the extinction
theorems to determine these limits in these spaces for the various factors of
harmonic analysis ,the trigonometric application has inverse estimates that
determine the membership of a function in some of the smoothness classes( like
Lipschitz class) , and it is known in terms of the approximation rate

1

Ps (g.;) < i— Erten+ 171, (g)e} ... (1.1)

The trigonometric approximation applies to Lebesgue spaces

LY (F),1 =p < oo,0r B(F), (the continuous function on F) for t = oo ,
(t = o0,p < w)sinceF:=[0,2m),g € L*(F),1 =p < oo,



s,meN:={1,2,3,..}, Frg (o) =g (o +f) by translation operator,

0: (9.9 =sup{[|(F) gl :0 <7 =< 0
the s th moduli of smoothness of the function g , | is identity operator , F,
.There is a class of trigonometric polynomials whose degree is no more than m,

Em (@pp =f{llg— Fll, . F € Fp}

where d, aconstant and it just depends on s, t .After that , various applications

of (1.1) and generalizations were reached . In 1958 Timan proved this
development (1 .1)also applies to

Ifl <p < oo,g € L*(F),m,s € N,p=min{2,t} then

1

0. (9.5) < %= (Zm o1 €, (), (1.2)

m

where d, aconstant and it just dependson s, t

We noticed that the value min{2,t} in (1.2) it is the optimal value , we

notice that there are similar problems within the spaces of weighted functions ,
for example,Lebesgue spaces
L, .(X), weighted variable exponent spaces .Now we need different parameters

for smoothness ,note the definition below

Let¢ €B,,1 <t < o ,g €L,,(X),s,m eN

Also let
y+f
1
8 g (v) = Z_f f g (x)dx for f e Randy € F.
y=f

We now need to determine the modulus

Ly

5 (9.9 =swpocs o||] [(1-, )a|| .0 =0

=
] D .u



Now

| 1 ds L
Js (g.a)w < 2 ’Eﬂ(g)p,ﬁ Zlnz L, (g)p#l............(l.m

where d, a constant and it just depends on s, t

Now 1 <p < o ,p €B.,g €L,,(X),s,m €N, whered,is a positive
constant and it just depends on s, t such that

Js (9.5) = 2 (Smin® et €2 (@) fF e (1.4)
m Sy u m

¥ s € R*, now we will use the weighted fractional smoothness coefficients
(1.4 ) ,the variable exponent is weighted with respect to

Ly ,(X)is (1.4)withs € R*. Inour work , we now prove the right side of
(1.4) Zsand replace it with s. Variable exponent L, ,(X). For the first time

the un weighted fractional coefficients of smoothness were evaluated in spaces
by Taberski and Butzer in 1977. Now we will use some definitions . Suppose T
be a class of Lebesgue fraction that are measurable

Then
t: F — (1,)suchthatl <t,:=essinfp yer(y)=t"i=

essinfp yer(y) <

We will write the definition of the conjugate exponent of t ( ) as
t@) = t(/t(y-1

The class L; ‘;'] we define it of 2 m periodic measurable functions g: F — C
then

flg(;}f)l*‘i‘-’] dy <o
_\'_'F'



C isthe complex planeandt € T .
The L; ‘;'] it is a class of a Banach space with the norm

t(v)

g (y) dy <1\,

b

lgll, . - =inf{b >0: “
_SE'

The functions ¢@: F — [0, ]is called a weight if it is proven to be

measurable almost everywhere positive , the functions of Lebesgue

£()

measurable gt F —» C holdg g € £5%’ L,

and we called weighted Lebesgue spaces with variable exponent and is Banach
space with norm

lgll, . == llegll,,
And 2m periodic weight ¢ then we can denote by Lﬁjthe weighted Lebesgue

spaces 2m periodic measurable functionsg : F — C then

forg € L
P .

1 1
g ot € LY(F)theset ||gll, , = ”.9‘ @t

We taket € T , the following condition [1] is fulfilled by the weight class

1

1
TR ||¢t£r]" ot Oc)

—_ g:: (o a)
IR, Pk

p.H

I @t "15'-;4 '=SUP,ex

We will use B¢ .y torefer toit. Since

Tp = ( = I - dy)‘l also Ristheclassof all intervals inF
IRl 7R t ()

There is a condition and there is a positive constant d- , so it is said to T (y) it
satisfies local log-Holder continuity
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ds
IT Cy ) — T (vIllpp = 7 Yy, EF e (1.5)
og )

"}’1 + Y2 "p i

Theclasst € T satisfying (1.5), now we will refer to it as T'°9

Suppose g € £, and

y+fi2

1
9=+ | gwar, yer

v—fi/2

The Hardy Littlewood maximum operator U is bounded by L;{ Jif and only if

@ € B,(, it has been proven in condition [1] andt € T'°9 Steklov's mean

t(.)
]

numbers and facts y,f € F,0 <s , we will determine through binomial
expansion that

Sfg)= He=J)» g

operator , if t € T'°9 and ¢ € B, (), then B is bounded in £ . After using

fiz fi2
= ZC: D(—l]c (c) f_': f f g(yv+h, +h_.)dh, ..dh_,
- f/2 — /2
Where
() sy_ s—1D..(s-f+1)
get” ()= — fore>0,

(=sand () =1, > |()] <

Ift €T'°9,9 €B,(yand g € L;{'] ,there is apositive constant dg
Just depends on s and t then

"é}?g"p# <dg llglly, <. (1.6)
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For 0 = s we can now determine the fractional moduli of smoothness below s
for

t €T ¢ €B,(yand g EL;{']

[s]
(9. Qi =50 gy weo ||| [(7- 7, ) s g]| 020,

|
] P

Where

0

Jo (9.Qp =gl | [(J-96,) 529 =529

j=1
Suchthat 0 < s < land [s] it is the integer part of the real number s
We have that t € T'9 ¢ € B,(yand g € L,'” by (1.6)

there is apositive constantd, Just depends on sand t then

Fs (9,Qpp = dsllglly -

If t €T ¢ €B,(),then@'™Y € L1(F). The set of trigonometric

polynomials in L;{ J_On another side t € T'°9 and @ € B,

menL;{-] c LY(F) .Forgiveng € L1(F),

o :I =] .
suppose g (v) ~ "2+ T2, (be (g)coscy + 1. (g) sinc )

— Z d.(g) e’ Y v (1.7)

The Fourier series of g with d.(g) = G) (b.(g)—jr.(g)) , now we set

LY(F):={ge L*(F): dy(g)=0 fortheseriesin (1.7)}.
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Suppose B € R*.We specify fractional derivative of a function g € L5 (F) as

gP ) = Zm__ d.(9) (G ), ,)F el Y

Provided that the right side is where ((jc), )f : = llcll, , /™I Fsignk gg
principal value . Now we talk about the function g € L;{ Y it has a fractional
derivative of rank g € R* if there isafunct‘ioniEL;{'] so that it satisfy
Fourier coefficients d (i) = d.(g) (G ), )P we will write in this

case g'¥) =1i.

Suppose Hf{.] PSS T,B = 0 be the class of functions g € L;{'] in which

(g) t(.) B
g E;qu i Ht{.] .l.’p

Becomes a Banach space with the norm

lgll, . = lgll,..+ [lg ||

p.u
The set€,, (), , = inf {llg— Fll, , : F € M}forg €L’ .

In 2014 H'ast'o and L. Diening, Muckenhoupt weights in variable exponent
spaces [1] , studied variable exponent spaces was the hope that many classical
results from Lebesgue space theory could be generalized to this setting, but not to
general Musielak—Orlicz spaces , in 2003 , Kokilashvili and S.G. Samko,
Singular integrals weighted Lebesgue spaces with variable exponent [2] , The
mapping properties of Cauchy singular integrals defined on the Lyapunov curve
and on curves of bounded rotation are also investigated, in 2007 , Kokilashvili
and Yildirir, On the approximation in weighted Lebesgue [3], the approximation
problems for periodic functions are investigated in weighted Lebesgue spaces
with the Muckenhoupt weights. For this case we obtain inverse type inequality
for the derivatives of 2m periodic function in terms of generalized modulus of
continuity. The introduction of such structural characteristic of functions was
caused by the failure of continuity of shift operator in weighted spaces. In
unweighted Lebesgue spaces the inequalities for classical modulus of continuity
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and the best approximations of derivatives , in 2007, Kokilashvili and Yildirir,
On the approximation in weighted Lebesgue spaces [4] , we deal with the
estimation of the best approximation and generalized modulus of continuity of
derivatives of periodic functions in weighted reflexive Lebesgue spaces, in 2008
, Akgun and Israfilov, Approximation and moduli of fractional orders in
Smirnov [5] , we investigate the approximation problems in the Smirnov-Orlicz
spaces in terms of the fractional modulus of smoothness. We prove the direct and
inverse theorems in these spaces and obtain a constructive descriptions of the
Lipschitz classes of functions defined by the fractional order modulus of
smoothness, in particular , in 2009 , A refined inverse inequality of
approximation in weighted variable exponent Lebesgue spaces [6] , improved
converse theorems of trigonometric approximation in variable exponent
Lebesgue spaces with some Mucken-houpt weights , 1n 2009 , Operators of
Harmonis Analysis in weighted spaces with non-standard growth [7] , e develop
a certain variant of Rubio de Francia’s extrapolation theorem. This extrapolation
theorem is applied to obtain the boundedness in such spaces of various operators
of harmonic analysis, such as maximal and singular operators, potential
operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier
series and others, in weighted Lebesgue spaces with variable exponent. There are
also given their vectorvalued analogues.,in 2010 , Sharp Jackson and converse
theorems of trigonometric approximation in weighted Lebesgue spaces [8] ,
prove that improved Jackson type direct theorem of trigonometric polynomial
approximation in Lebesgue spaces with Muckenhoupt weights with respect to
fractional order moduli of smoothness holds. In addition, we obtain sharp
converse and Marchaud inequalities of trigonometric approximation of functions
and its fractional derivatives in these weighted Lebesgue spaces

2.Auxilary lemma In this section, we will present lemma that is needed in our
main results

Lemma2.1ife~* €B _  andt €T'°9 forsome t, € (1,t,)

o

then@ € B, .
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Proof :-Using the Extrapolation theorem 3.2 of [7] we get that Hardy Little-
wood maximum operator U is bounded in Lf;,{' ! this means [1]that ¢ € B, .

3.Main results In this part, the theorems we need are presented in order to reach
important results that we need later

Theorem3.11f@~% €B  andt € T3 for some

To

T, €(1,t,),m € N,s € R",i:=min{2,t, } and

t(.)

g € L, ", thereisapositive constant dg it just dependst and s as in
m -
1 dg . . *
; L — = 15-1 Ef.l,_
Is (g m)p . ms,zn n—1 (gjn-#]

Then y* is convex for4i = min{2 ,t, } we do have

(nnet €, (9),0) = (A=D1 6, (9)p )

i

= (Zn: w1 E, (an-#)i - (nil ™t E, (g]n-#) .

w=1 w=1

Now we will add the last inequalities n = 1,2,3, ... to get

i{(mg_lg“ (9)5,) = (=D)n2 &, (9),,) )
= i (i w7t E, If.gjw)i - (nz_:l w1 E, (g)pﬁ)w
Also
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1 m
n=1

n=1

The last inequality indicates that the theorem 3.1 it is an improvement of the
converse theorem , the theory 3.1 of inequality has given highly accurate results

If

1

E(G)pu=Y (=) neEN

me

Then

(o) 93

P .

l 1
ﬂ JE—
gm

By theorem 3.1 we get
1

(o), = ¥ (e lessl,, )

Proof:- In the beginning , using Lemma 2.1 by condition of theorem 3.1 the
condition ¢ € B, 1 satisfy . We notice that on the other hand , it is known as

l 1
g

S fifonfis1 91T l_[J[r-i]l (J— S.fj) J- 807 g has Fourier series
- sinn " ! sinn f
st'fl"fz- ------ fis] Q(.j"-‘ Z (1_ nx ) (1— n T, ) (1
_sinn f[:)g; o
nfis1 )"

Also

SXS'fJ."fZ' ------ fls] ‘g(j
- ng-fx--fz ------- fls] (‘g('j_wzu_l I: 'g])

+ Sj.ﬂ. 0 fls] qu_l I: 2] ) )

16



BY €m (8)p,u + 0 wehave

Sttt (B =Worn Cop))|| < s (5,0 Mg () =W (1)l

< dy5(s,t) &1 (8)p

1

dlﬁ(gltj N is— i :
‘ET Zﬂ YEny (8pui -

n=1

on the other hand through 3.2 we conclude

5;11 £2mfls] Wou-2 (. -g)Hp ) < dy;(s,t)

imm i

D
Where
297 : s—[s] : :
L Z (1 smnx) (1 smnfl) 1 sinn fiq] 4. ol nY
ot nl Sz nx nf /- nfig ) "°
By [6]
1
1 T I 1'_1
2 T
DIgu Pl =gl
w=1 DU w=1
The estimate [|Q,, I, u then
zﬁw..'l—J. zﬁw..'l—J.
. sinn x\° "< sinn f
1Qully = | > |l > (1-Z25) 0 (1- ). (1
In|=2@-1 In|=2@-1 ™ "

_Sinnf[s]) [ 1 d ejn;u]
nf[s] ) |n|s n

Using Abel’s transformation we conclude

P .y
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s—[s]

s (1 _ sinn Jr:) (1 _sinn f; ) (l— sinn f[g])
nx n fl n f[s]

: s [s] :
Pl (l_sm(n—i—l]x) (1_51n(n—|—1]f1)m (l

1Qully.. <

(n+1)x (n+1) f;

sinfiln+1 1 )
_ ( )f[s]) . sldfe‘rfyl
(n+1) fiq 5t ||

p.u

. s—[s] .
e -1 (1_ sin( 2% — ljlx) (l— sin( 2% — 1]f1) (l
(2« —1)x (2¢—-1)f, ]~
w3
sin( 2% — 1) fi ¢ s
(291 fi. e |de e’ |
y |g|=2@-1
.
With us
2%-1 1 d.(s.t) 2@ _3
- 185, .
p 19 | = e |d, e’ 7|
=297 le]= 291
D . P .
d I: ) 2@_3
s5,t , < g ,
= oo em el &) |d, &7
|_E|= Jw—1
.U
ds(s,t) || = d.o(s,t)
S, . Sl
- lgm—l 5 |d-f e_]f}'l = HT 'EE""}_J'—I (g]p,p
|22 Fa 2
l£]= 2 -
And also
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293

dys(s,t)
7 IS |d, ei V| < —lgzm Eromi_y (8)p
|£l= 201
=]
And because y*( 1 — F”'ﬂjs not decreasing also (1 — T) <y fory>0
we get
d,o(s.t) 2" - :
s, ws sinnx
1Qu Il = 22 (o)1 (1= 225 mp) - (1
. x5 [g]fl"'f[s] S nx 1

sin nfl Siﬂ?’lf[s]
-7 ) (n fis1) (1_ Tm)

) s—[s]
—((n+1)x}f—[f](1—Sm(n+1]x) ((n+1F) (

(n+1)x

sin(n+1) f; sin(n+ 1) f[s
T TmiDf )""f”**”f[ﬂ(l_ (+ 1) fia) ‘

E w-1_y (g]p p +

do(s,t)27%°

(29— 1) x)y=Le] (1= 222D 0 gye (4

(29-1)x
sin( 2‘”—1]}‘1) o _ ( _ sin( 2“’—1]}"[3]) |
(20-1)f, /™7 (2 Dfisr |1 ( 29-1) f[s] '

Eztﬂ—l_l I:g)p "

. s—[s] .
sin( 2 —1)x sin( 2 —-1) f
sin( 2 —-1) f;

- S] w—1
(2=1) fis) ) F2mee B

= dy, (5,0). 2957050 f L fioy Epemiy (9,

So
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1Qully .= dpp (s,8). 295750 0 iy Epumay (0,

And therefore

SS

x.fy faifg] Wou-s (. -g]”p#

= dza(s-t]x{s_[ﬂ]n B PR { ,Z 22 wst E;m_l—l (g]p-ﬂ
w=1

1
E dzcl.l:s-t]x{s_[S]]fl -f2 -------f[s] {2115‘63 (g]plu}i

s =k

u 29713

+dys(s, ) xC0DE Z Z T Ei (@)

w=1 n=2@"2

1
qUu—1_4 )

< dy (s, ) xU s e £ frg Z ntsTl el (), .,

n=1

The recent inequality means

;ffs(g.

1

1 A, (s,t) (v | :
_) = 2?(5 ) , n”LS—lEl'li_l (ng-Pl
m/p u m Z

n=1

Theorem 3.2 Under theoretical conditions Theorem 3.1 , there are d,, ,

just depend on s and t such that

20
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o
=
[e*]
ﬁ
>
e
T
—
I
=,
=
®,
=
]

p . .
1
= 2
< di; (Zlamﬁ) (2.1)
w=n o
where
2%
Ayi= Ay, (}’-g]:: Z dnejny'
|n|=2ﬁ:2l—J.

The proof of this theorem same theorem proof in [7] Littlewood — Paley

Theorem 3.3 Under theoretical conditions Theorem 3.1

o0

D () < (1,8)

c=1

Em (8P )pp dio (MP €0 (g + {ZEmern PPt E2(g), )7 ) sat
isfy corollary

Proof :- Suppose F,, be a polynomial of class M,,, such that

Em (G)ppu=llg— Fnllp . then

Ao (¥)i=F(¥y)= Fo(¥); An(¥)i= Forn (y) — Fapn-a (),
n=1,2,3,..

Now

Fau(y)=F (J’)"‘Zcﬂn (y), M=0,1,2,...

n=0

Ve =0 ,3D e N by (2.1)suchthat
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(=

Zn”:ﬁ‘l Ex(G)pyu < € (2.2)

n=27T

By fractional Bernstein’s

FOl <dyp(Bt)mfIFN,, , B €R
P

But we have

|4 ”M < dys (B,t) 27 || A, Iy < dao (B,8)27F Exns (g),, o1
€N.

It is easy for us to see this from the other side

ZH—L

26 Erms (9D < Ay (B,0) ] ) @i EL (9Dt

w=2"1"2 +1

n=2,3,4,..
With respect to positive integers C < M

M
FOW-FE w= Y BP0, yer

n=C+1

And later , if it is large enough, we get from (2. 2)

M
[7& - 0, = ), 47w,

n=Cc+1

dy, (B,1) Z 27 Eyni (),

n=C+1

I

1
aM—1 )

= d;, (B,1) i Z miﬁ_lgi (Q)n-ﬁ

n=C+1 \w=21"2
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i
1

< (B0)] Y 0FTEL (9)ul < da(BO)ET

w=26"2 41

EM_J-

{SF‘ g"g.j} is Cauchy sequence in L:;,{' ) thenthereisbho € E:;,{' ) hold

||Tiﬁ.,3— J” — 0, asM — o
D .y

from the other side we get

||1F Z'Enj — g% ”p}y -0, asM— oo

g'iﬁ'] = ob.a. theng EKf{.]Ap

Now

‘Sm(g{ﬁ] )p;.u = "g{ﬁ) — W g{ﬁ]”

p.u

Z [W oC+2 ‘g{ﬁ] - ch g{ﬁ]]

c=u+2

= "W SU+2 g{ﬁj — Wm g'iﬁ] "p”u +

P

We use the fractional Bernstein’s inequality we get for 2% < m < 2%+1

[W urz g® — W, g® || = das (B,£)2°2 €, (g),, (2.4

P .
= dEﬁ (18 't)mﬁ E:]‘:"‘.', (g)p,lu .

By (2.1)weget

Z [W L g{'g] - Wgc g{ﬁj]

e=u+2

P
50+1 2

(Gn)p)f dy &m?

|

=

4

~

T

=~
M1

e=u+2 |Inl=2541

.

23
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And

Z [W gC+2 g{ﬁ] - ch g{ﬁ]]

c=u+2

p.u

(=

2C+l

sdo (B[ )| D (G, 0F dy e

e |

e=u+2 ||Ilnl=2%+1

p .
We put

20+1 g0+
19illpyi= ). (G, 0f dy ™ = ) nf2Re(d, ol (r*én/2))

Inl=2°+1 n=2641

And we have

2C+l
197 Iy . = Z nfH, (y)

n=241
p .

Such that H, (y = 2 Re (d,, e (ny+Bn/2 ]].Using Abel’s transformation we
get

2€+l_1 n
10l < > [nf =+ 0P| Y H ()
n=2F+1 £= 241 p.u
2C+l_ 1
Hlf ||| D Hew)
£= 2041

p.p

2°+1 =n = 2 (¢ € N) we have
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n

Hy, (y)

= 2C
f=2F+1 p.u

< dso (B,1) Exc (g)p

Since

B (n+1]|3—1 B =1,

B_nB
(n+1)f—n E{Bﬂﬁ_l o=p<tl,

Then

"Q:I "p,p = dM] (ngt] 26'3 & 261 (gjp,lu'

Also

Z [Wz"ﬂ gl — Wye Q{'EJ]

= u+2 B

1

= dy,y (ﬁ-f]’ Z 2¢Ft E;L“—l (gjwl

c=u+2

1

= dy, (B,1) ’ Z n*f-t gl (ij#]

o= u+2
Corollary 3.4 If

s, f e RY, s < £ and

1
0 <x = 5 ,then there is a positive constant d; dependingonlyons,f and t

Such that

1

1 ,
, 4e(g, M)y o] dh
= 5 .
Fs(§,X)e(.) p < dox ” — -

25



Corollary 3.5 Under theoretical conditions Theorem 3.1,
then there is a positive constant d,, dependingonlyons,f and t

Such that

1

: (g)y —

i (50 1)
m/,.,

1 .
< dll E (Z n_fa-{s+ gl-1 E:. (g Jp.,u)

n=1

1

1

+( i B i1 53‘(9)1;.#)1:

n=m+1

Form € N and8,s € R*
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