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Abstract. The reliability of the single and parameter estimate  arrangement in the stress-

strength model, which has strength (t) according to a stress (u), provided our inspiration for writing this paper. 

They follow the Exp. T – X Fréchet distribution m(𝜎,𝛼,𝛽). Numerous estimate methods are reviewed and 

proposed in this paper. To compare these methods, three metrics Bias, MSE, and MAPE were employed. This 

paper's conclusions are derived from an analysis of real data collected by Monte Carlo simulation. 

Keywords: Exp. T – X distribution, Fréchet distribution, Reliability, Estimation methods, Stress – strength 

model. 

1. INTRODUCTION 

In practical domains such as risk management, economic, financial, and actuarial sciences, statistical distributions 

are widely used in data modeling. However, the presumptive probability model of the phenomenon under study 

ultimately determines how well the techniques work. Insurance losses in applied areas are typically positive, right-

skewed, unimodal, and have substantial tails (see [9]). Actuaries typically search for distributions with a high tail 

in order to accurately assess the level of business risk involved. The distributions with greater right tail 

probabilities than exponential ones are known as heavy-tailed distributions [8][9]. Numerous scientific and 

engineering applications make use of the stress-strength (S.S) example.[14] The Fréchet distribution undergoes 

transformed through Fréchet distribution with three-parameter used data modeling applications from the fields of 

engineering and medicine. Here, we present the exponential T-X (ETX) Fréchet family[6], a family of 

distributions. When modeling heavy-tailed data, the suggested model is incredibly adaptable. Following are some 

of the statistical properties of (ETX) Fréchet distribution, including the probability density (pdf), cumulative 

distribution (cdf), reliability (R),the hazard (H), the first raw moment ( ) functions, respectively,  as : (see figure 

1and 2) [11][12] 
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Figure 1: pdf and cdf functions for a ETX (Fréchet)  distribution and different value of parameters. 

 

 

  

Figure 2: Reliability  and hazard functions for a ETX (Fréchet)  distribution and different value of 

parameters. 

 

 

 Where  are shape parameters, and  is scale parameter.  The paper aims to find a single stress strength model 

for T-X family statistical distribution. We derived from the family of the exponential distribution and the baseline 

Fréchet distribution. In addition to conduct simulations for different values of parameters and with different 

sample sizes. The paper consists of four sections. The second section consisted of finding the stress and strength 
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model for the ETX (Fréchet) distribution. The third section contained estimating the distribution parameters using 

eight different methods. The fourth section consisted of a Monte Carlo simulation of the distribution. The fourth 

and the final section contained the most important conclusions that we reached during the paper. 

2. The Proposed model ( a single reliability model). 

Let u be the stress and t be the strength independent random variables. We used the ETX (Fréchet) distribution to 

derive the stress strength for single reliability as: 

                               (6) 

 

 

                                          (7) 

3.  Methods of estimation. 

In this section, we derived eight estimation methods such as ( Maximum likelihood, Exact estimators of moment, 

Percentile, Approximate least squares, Weighted least squares, and three shrinkage) methods as follows:  

3.1.Maximum likelihood Estimator (mle) [3][4] . 

The process of estimation in this way can be defined as making parameter values of a function where have a great 

values as possible. It is characterized by efficiency, adequacy, stability and consistency, in addition to its lack of 

bias. if  are random variables (stress) have probability density function of a distribution ETX (Fréchet). 

The following formula is the likelihood function, denoted by  as follows 

 

Where  are the distribution parameters(𝜎,𝛼,𝛽), then take the nutural logarthim to the equation (8)  as 

 

To find the (𝛽, 𝜎, and 𝛼) estimators by taking the partial derivative of equation (9) with respect to (𝛽, 𝜎, and 𝛼) 

respectively as follows: 
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with respect to   

 

and with respect to  α  

 

Similirty , when    be a random sample from the strength u which is distributed as ETX(Fréchet), 

when  is known and shape parameter  unknown. The method for the mle strength  is presented by 

 

 

 

There is no exact formula to estimate the parameters of EXT(Fréchet) distribution. However, we can estimate 

them by nonlinear numerical analysis methods.   

3.2. The Precise Estimators of Moments Method (PEMM) . [1] [15]  

We suggest the expected value  , the variance  and coefficient of variation  for a ETX (Fréchet) 

distribution's as follows: 

 

 

 

Then the PEMM is given below: 
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3.3.The Percentile Estimator. (prec) [16] 

Using the graphical approximation to the best linear unbiased estimators, Kao (1959) first investigated this 

strategy, by a straight line between the theoretical points derived from the distribution function and the sample 

percentile points, one may obtain the estimators. When dealing with a ETX (Fréchet) distribution, one might 

apply the same. idea to get the estimators of and based on percentiles due to the distribution function's 

structure.[10] 

 and ,where  then, 

 

 

3.4.The Approximate Least Squares Estimator (alst)  

Approximated least squares technique estimators can be made by reducing the sum of square error between the 

value and its expected value. Among the most efficient and well-liked techniques, the LS approach is widely used 

to fit models and solve mathematical and engineering problems, particularly in linear and non-linear situations. 

[7]. 
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(21) 

 

 when    be a random sample from the strength u which is distributed as ETX(Fréchet), when  is 

known and shape parameter  is unknown . The alst method for the strength u is presented by 

 

 

(24) 

 

3.5. The weighted least squares estimator (wls). 

The weighted least squares estimator of  ETX (Fréchet) distribution These can be acquired by reducing as follows: 

                                                    (26) 

              (27) 

        (28) 

 (29) 

In the same way, the wls method for the strength  is presented by 

                                                     (30) 
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 3.6. The Method for Estimating Shrinkage (shr) [5] [17] 

The shrinkage estimation method can be conceptualized as a Bayesian approach that depends on prior 

information. Thompson in (1968) has suggested the problem of shrink an unbiased estimator and he  presented the 

primary reasons for using earlier estimates [4]. The parameter was used as an initial value , where 

, , in the shrinkage estimation approach. The normal estimator ( ) was then applied to 

them using a shrinkage weight factor , , which may be expressed as: 

          (34) 

3.6.1. The Weight-Based Shrinkage Function (shr1).[13] 

We shall examine the weight reduction function. The function form in this subsection is represented by 

, where  represents the sample size and  represents the number of participants. The value of 

 is between 0 and 1. Using the given expressions  and , where  and  

represent number of particioants (the sample sizes of u and t) respectively, the shrinkage estimator utilizes the  

and  shrinkage weight functions described in equation (34). 

 

 

Now, from equations  , and   were used to get the single stress strength  relaibility formula as follows 

 

3.6.2 The Constant Shrinkage Estimate(shr2).[13]. 

In the scenario, there is a constant shrinkage factor, we can suppose that , and has a value 

between 0 and 1 where , n refer to the sample size.  

In order to obtain the constant shrinkage estimators, we substitute  and  into equation (34)  by taking the 

forms below as , and , 1. as shown: 

 

and 

. 
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Here, we substuted by  and . Therefore, from 

equations  , and   to get the single relability as follows:  

 

3.6.3 The Shrinkage function (shr3).[4] 

In this part, the shrinkage weight factor is determined by the sizes  and . Specifically, we define  as  

and  as , where  is a function that satisfies . Hence, the shrinkage estimator 

employs the shrinkage function of  and , as defined in equation (34) below: 

 

and  

       

Now, in which equations  , and   were used to get  

 

4. The simulation. 

The Monte Carlo simulation was employed to validate the effectiveness of the proposed estimate approach for 

assessing the reliability of a single component system. [2] The eight proposed estimate methods are implemented 

using various sample sizes (25, 50, 75, 100). The statistical results for each sample are determined using bias, 

mean absolute percentage error, and mean squared error criteria, with 1000 repeats. Hence, the subsequent 

procedures elucidate the Monte Carlo simulations for each model. 

Step 1: To determine the performance, begin by initializing and generating random samples that adhere to a 

continuous uniform distribution within the range of 0 to 1. The distribution U is a uniform distribution with a 

range from 0 to 1. 

Step 2: Convert the given uniform random sample into a random sample of the power Fréchet distribution by 

utilising the cumulative distribution function. 

Step 3: Calculate the estimated parameters of the 8 method mentioned as in section 2. 

Step 4: The estimated reliability of stress-strength models using various estimating methods, such as 

, and , have been calculated in section 2. The reliability of 

estimation is explained by the findings in Tables 1, 3, and 5. On the other hand, the results in Tables 2, 4, and 6 

demonstrate the comparison between these approaches when biassed MSE and MAPE criteria are utilised. 

Nevertheless, all estimators rely on the values of the sample size. 
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Table 1 :  0.9973695  

n ,m         

25,25 0.9954028 0.9884392 0.9886431 0.9884258 0.9883402 0.9883279 0.9883297 0.9898492 

25,50 0.9955645 0.98843528 0.9887909 0.9884218 0.9883475 0.9883318 0.9883297 0.9903102 

25,75 0.9955544 0.98833736 0.9890803 0.9883400 0.9883400 0.9883255 0.9883297 0.9902962 

25,100 0.9954077 0.9883614 0.9891485 0.9883478 0.9883959 0.9883392 0.9883297 0.9902216 

50,25 0.9942659 0.9884850 0.9884850 0.9884718 0.9883313 0.9883298 0.9883297 0.9887191 

50,50 0.9923691 0.9882344 0.9886239 0.9882205 0.9883323 0.9883302 0.9883297 0.9885987 

50,75 0.9951661 0.9883673 0.9886011 0.9883537 0.9883414 0.9883284 0.9883297 0.9893366 

50,100 0.9926940 0.9881839 0.9887758 0.9881699 0.9883417 0.9883300 0.9883297 0.9889866 

75,25 5.447361-  0.9883762 0.9880236 0.9883627 0.9882569 0.9883163 0.9883297 0.9881923 

75,50 0.9950735 0.9883237 0.9883594 0.9883100 0.9883782 0.9883350 0.9883297 0.9885378 

75,75 0.9902873 0.9883806 0.9883417 0.9883671 0.9883321 0.9883302 0.9883297 0.9886158 

75,100 0.9901972 0.9883844 0.9883743 0.9883709 0.9883329 0.9883303 0.9883297 0.9887106 

100,25 0.9851628 0.9883954 0.9878708 0.9883819 0.9883151 0.9883270 0.9883297 0.9876542 

100,50 0.9872024 0.9883604 0.9882654 0.9883468 0.9883129 0.9883265 0.9883297 0.9881602 

100,75 0.9886783 0.9883304 0.9883209 0.9883168 0.9883249 0.9883288 0.9883297 0.9883116 

100,100 0.9899873 0.9883544 0.9884088 0.9883408 0.9883308 0.9883299 0.9883297 0.9885465 

  

Table2 :  

n ,m Criteria         Finest 

25,2

5 

Baise 2.0318909 2.0318859 2.0320898 2.0318725 2.0317870 2.0317747 2.0317765 2.0332959  

MSES 4.1569083 4.1285606 4.1293891 4.1285062 4.1281584 4.1281085 4.1281157 4.1342924  

Map 1.9539565 1.9472828 1.9474782 1.9472700 1.9471880 1.9471762 1.9471779 1.9486341  

25,5

0 

Baise 2.0390113 2.0318820 2.0322377 2.0322377 2.0318686 2.0317785 2.0317765 2.0337569  

MSES 4.1575677 4.1285445 4.1299901 4.1299901 4.1284900 4.1281240 4.1281157 4.1361675  

Map 1.9541115 1.9472790 1.9476199 1.9476199 1.9472662 1.9471799 1.9471779 1.9490759  
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25,7

5 

Baise 2.0390011 2.0317841 2.0325271 2.0317704 2.0317868 2.0317722 2.0317765 2.0337430  

MSES 4.1575269 4.1281466 4.1311665 4.1280912 4.1281577 4.1280985 4.1281157 4.1361107  

Map 1.9541017 1.9471852 1.9478973 1.9471721 1.9471878 1.9471739 1.9471779 1.9490625  

25,1

00 

Baise 2.0388544 2.0318081 2.0325952 2.0317946 2.0318426 2.0317860 2.0317765 2.0336684  

MSES 4.1569291 4.1282445 4.1314435 4.1281893 4.1283847 4.1281545 4.1281157 4.1358072  

Map 1.9539612 1.9472083 1.9479626 1.9471953 1.9472414 1.9471871 1.9471779 1.9489910  

50,2

5 

Baise 2.0377126 2.0319318 2.0314562 2.0319185 2.0317780 2.0317766 2.0317765 2.0321658  

MSES 4.1522741 4.1287470 1.9468710 4.1286929 4.1281222 4.1281162 4.1281157 4.1296981  

Map 1.9528669 1.9473268 1.9468710 1.9473140 1.9471794 1.9471780 1.9471779 1.9475511  

50,5

0 

Baise 2.0358158 2.0316812 2.0320706 2.0316673 2.0317791 2.0317769 2.0317765 2.0320454  

MSES 4.1445482 4.1277285 4.1293112 4.1276721 4.1281263 4.1281175 4.1281157 1.9474357  

Map 1.9510491 1.9470866 1.9474598 1.9470733 1.9471804 1.9471783 1.9471779 1.9474357  

50,7

5 

Baise 2.0386128 2.0318140 2.0320478 2.0318005 2.0317881 2.0317751 2.0317765 2.0327833  

MSES 4.1559454 4.1282685 4.1292185 4.1282133 4.1281630 4.1281102 4.1281157 4.1322083  

Map 1.9537296 1.9472139 1.9474380 1.9472009 1.9471891 1.9471766 1.9471779 1.9481429  

50,1

00 

Baise 2.0361408 2.0316307 2.0322226 2.0316167 2.0317884 2.0317768 2.0317765 2.0324333  

MSES 4.1458760 4.1275233 4.1299287 4.1274664 4.1281643 4.1281170 4.1281157 4.1307856  

Map 1.9513605 1.9470382 1.9476054 1.9470248 1.9471894 1.9471782 1.9471779 1.9478074  

75,2

5 

Baise 0.0440391 2.0318230 2.0314703 2.0318094 2.0317037 2.0317630 2.0317765 2.0316391  

MSES 2.0984883 4.1283048 4.1268719 4.1282497 4.1278199 4.1280612 4.1281157 4.1275575  

Map 0.0717377 1.9472225 1.9468845 1.9472095 1.9471081 1.9471651 1.9471779 1.9470463  

75,5

0 

Baise 2.0385202 2.0317704 2.0318061 2.0317568 2.0318249 2.0317817 2.0317765 2.0319845  

MSES 4.1555687 4.1280913 4.1282363 4.1280358 4.1283126 4.1281372 4.1281157 4.1289614  

Map 1.9536409 1.9471722 1.9472063 1.9471591 1.9472244 1.9471830 1.9471779 1.9473773  

75,7

5 

Baise 2.0337340 2.0318274 2.0317885 2.0318138 2.0317789 2.0317769 2.0317765 2.0320625  

MSES 4.1360749 4.1283226 4.1281645 4.1282676 4.1281256 4.1281176 4.1281157 4.1292782  

Map 1.9490540 1.9472267 1.9471894 1.9472137 1.9471803 1.9471784 1.9471779 1.9474521  

75,1
Baise 2.0336439 2.0318312 2.0318211 2.0318177 2.0317796 2.0317770 2.0317765 2.0321574  
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00 MSES 4.1357079 4.1283381 4.1282971 4.1282832 4.1281287 4.1281181 4.1281157 4.1296638  

Map 1.9489676 1.9472304 1.9472207 1.9472174 1.9471810 1.9471785 1.9471779 1.9475430  

100,

25 

Baise 2.0286095 2.0318422 2.0313175 2.0318287 2.0317619 2.0317738 2.0317765 2.0311009  

MSE 4.1152671 4.1283827 4.1262511 4.1283279 4.1280565 4.1281047 4.1281157 4.1253713  

Mape 1.9441429 1.9472409 1.9467381 1.9472279 1.9471640 1.9471753 1.9471779 1.9465305  

100,

50 

Baise 2.0306491 2.0318072 2.0317122 2.0317936 2.0317596 2.0317733 2.0317765 2.0316070  

MSE 4.1235373 4.1282405 4.1278545 4.1281853 4.1280473 4.1281028 4.1281157 4.1274272  

Map 1.9460975 1.9472074 1.9471163 1.9471943 1.9471618 1.9471749 1.9471779 1.9470155  

100,

75 

Baise 2.0321250 2.0317772 2.0317677 2.0317635 2.0317716 2.0317755 2.0317765 2.0317583  

MSES 4.1295325 4.1281186 4.1280801 4.1280631 4.1280961 4.1281120 4.1281157 4.1280420  

Map 1.9475120 1.9471786 1.9471695 1.9471655 1.9471733 1.9471770 1.9471779 1.9471605  

100,

100 

Baise 2.0334341 2.0318011 2.0318556 2.0317875 2.0317775 2.0317767 2.0317765 2.0319933  

MSES 4.1348543 4.1282160 4.1284372 4.1281607 4.1281199 4.1281165 4.1281157 4.1289968  

Map 1.9487665 1.9472016 1.9472537 1.9471885 1.9471789 1.9471781 1.9471779 1.9473857  

 

Table 3:  

n ,m         

25,25 0.6355840 0.9608324 0.9608149 0.9608321 0.9608350 0.9608332 0.9608338 0.9605842 

25,50 0.9134389 0.9608309 0.9608147 0.9608314 0.9607615 0.9608343 0.9608338 0.9602425 

25,75 0.9125204 0.9608359 0.9607999 0.9608361 0.9606346 0.9608335 0.9608338 0.9604520 

25,100 0.9178498 0.9608334 0.9607775 0.9608339 0.9608106 0.9608337 0.9608338 0.9603778 

50,25 0.9159595 0.9608279 0.9608187 0.9608270 0.9608374 0.9608348 0.9608338 0.9608113 

50,50 0.9273577 0.9608356 0.9608369 0.9608351 0.9608319 0.9608333 0.9608338 0.9608116 

50,75 0.9246708 0.9608369 0.9608362 0.9608368 0.9608328 0.9608344 0.9608338 0.9608165 

50,100 0.9170091 0.9608374 0.9608330 0.9608373 0.9596853 0.9608346 0.9608338 0.9607846 

75,25 0.9455679 0.9608241 0.9607747 0.9608231 0.9608366 0.9608344 0.9608338 0.9607029 

75,50 0.9608354 0.9608345 0.9608349 0.9608006 0.9608006 0.9608343 0.9608338 0.9608208 

75,75 0.9211503 0.9608356 0.9608365 0.9608352 0.9608363 0.9608336 0.9608338 0.9608311 

75,100 0.9189571 0.9608357 0.9608363 0.9608353 0.9608341 0.9608335 0.9608338 0.9608315 
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100,25 0.9096935 0.9608241 0.9607970 0.9608230 0.9608205 0.9608358 0.9608338 0.9606625 

100,50 0.9553279 0.9608324 0.9608313 0.9608317 0.9608336 0.9608338 0.9608338 0.9608213 

100,75 0.9209811 0.9608330 0.9608322 0.9608324 0.9608369 0.9608348 0.9608338 0.9608351 

100,100 0.9273271 0.9608325 0.9608331 0.9608318 0.9608353 0.9608340 0.9608338 0.9608222 

Table 4:  

n ,m Criteria         Finest 

25,25 

Baise -3.7236968  -3.3984489  3.3984659 -3.3984487  -3.3984458 -3.3984476 -3.3984470 -3.3986966  

MSES 98.643629 11.549452 11.549570 11.549453 11.549434 11.549446 11.549442 11.551139  

Map 0.8541998 0.7795892 0.7795932 0.7795892 0.7795886 0.7795890 0.7795889 0.7796461  

25,50 

Baise -3.4458419  -3.3984499  -3.3984661  -3.3984494  -3.3985193  -3.3984465  -3.3984470  -3.3990383   

MSES 12.533945 11.549462 11.549572 11.549458 11.549933 11.549439 11.549442 11.553615  

Map 0.7993959 0.7795895 0.7795932 0.7795894 0.7796054 0.7795888 0.7795889 0.7797245  

25,75 

Baise -3.4467604 -3.3984449 -3.3984809 -3.3984447  

-3.3986462 

 

-3.3984474 -3.3984470 -3.3988288  

MSES 11.903523 11.549427 11.549672 11.549426 11.550796 11.549444 11.549442 11.552037  

Map 0.790671 0.7795884 0.7795966 0.7795883 0.7796346 0.7795889 0.7795889 0.7796764  

25,100 

Baise -3.4414310 -3.3984474 -3.3985033 -3.3984469 -3.3984702 -3.3984471 -3.3984470 -3.3989030  

MSES 11.8434812 11.5494452 11.5498250 11.5494417 11.549600 11.5494431 11.5494424 11.5525422  

Map 0.7894492 0.7795890 0.7796018 0.7795888 0.7795942 0.7795889 0.7795889 0.7796935  

50,25 

Baise -3.4433213 -3.3984529 -3.3984621 -3.3984538 -3.3984434 -3.3984460 -3.3984470 -3.3984695  

MSES 11.8566433 11.5494826 11.5495450 11.5494887 11.549417 11.5494354 11.5494424 11.5495955  

Map 0.78988288 0.77959027 0.77959237 0.77959047 0.7795880 0.77958867 0.77958891 0.77959408  

50,50 

Baise -3.4319231 -3.3984452  -3.3984439 -3.3984457  -3.3984489 -3.3984475 -3.3984470 3.3984692  

MSES 11.7796620 11.5494303 11.5494210 11.5494333 
11.549455

2 
11.5494456 11.5494424 11.5495932  

Map 0.7872681 0.7795885 0.7795881 0.7795886 0.7795893 0.7795890 0.7795889 0.7795940  

50,75 

Baise -3.4346100 -3.3984439  -3.3984446  -3.3984440  -3.3984480  -3.3984464  -3.3984470  -3.3984643   

MSES 11.7966173 11.5494213 11.5494260 11.5494216 
11.549449

1 
11.549438 11.5494424 11.5495599  
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Map 0.7878845 0.7795882 0.7795883 0.7795882 0.7795891 0.7795887 0.7795889 0.779592  

50,100 

Baise -3.4422717  -3.3984434  -3.3984478  -3.3984435  -3.3995955  -3.3984462  -3.3984470  -3.3984962   

MSES 11.8492474 11.5494176 11.5494479 11.5494182 
11.557255

2 
11.5494368 11.5494424 11.5497767  

Map 0.7896421 0.7795880 0.7795891 0.7795880 0.7798523 0.7795887 0.7795889 0.7796001  

75,25 

Baise 11.5495079 11.5498440 11.5495149 11.5494231 
11.549437

9 
11.5494424 11.5503319 11.5503319  

MSES 0.7795911 0.7796024 0.7795913 0.7795882 0.7795887 0.7795889 0.7796189 0.7796189  

Map -3.4405100  -3.3984454  -3.3984468  -3.3984475  -3.3986033  -3.3984446  -3.3984470  -3.3984526   

75,50 

Baise 11.8371533 11.5494316 11.5494413 11.5494455 
11.550504

7 
11.5494258 11.5494424 11.5494802  

MSES 0.7892379 0.7795885 0.7795888 0.7795890 0.7796247 0.7795883 0.7795889 0.7795901  

Map -3.4381305  -3.3984452  -3.3984443  -3.3984456  -3.3984445  -3.3984472  -3.3984470  -3.3984497   

75,75 

Baise 11.8207942 11.5494301 11.5494237 11.5494330 
11.549425

6 
11.5494440 11.5494424 11.5494608  

MSES 0.7886921 0.7795885 0.7795882 0.7795885 0.7795883 0.7795889 0.7795889 0.7795895  

Map -3.4403237 -3.3984451 -3.3984445 -3.3984455 -3.3984467 -3.3984473 -3.3984470 -3.3984493  

75,100 

Baise 11.8358614 11.5494295 11.5494250 11.5494323 
11.549440

6 
11.5494441 11.5494424 11.5494580  

MSES 0.7891952 0.7795884 0.7795883 0.7795885 0.7795888 0.7795889 0.7795889 0.7795894  

Map -3.4134258 -3.3984621  -3.3984977 -3.3984634 -3.3984638 -3.3984490 -3.3984470 -3.3985290  

100,25 

Bais 11.6517511 11.5495448 11.5497866 11.5495537 
11.549556

7 
11.5494559 11.5494424 11.5499997  

MSE 0.7830249 0.7795923 0.7796005 0.7795926 0.7795927 0.7795893 0.7795889 0.7796077  

Mape -3.4039529 -3.3984484  -3.3984495 -3.3984491 -3.3984472 -3.3984470 

-

3.39844706

688121 

-3.3984595  

100,50 

Baise 11.5882587 11.5494519 11.5494596 11.5494565 
11.549443

6 
11.5494426 11.5494424 11.5495277  

MSE 0.7808519 0.7795892 0.7795894 0.7795893 0.7795889 0.7795889 0.7795889 0.7795917  

Map -3.4382997 -3.3984478 -3.3984486 -3.3984484 -3.3984439 -3.3984460 -3.3984470 -3.3984457  

100,75 Bais 11.8220771 11.5494474 11.5494533 11.5494519 
11.549421

4 
11.5494352 11.5494424 11.5494336  
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MSES 0.7887309 0.7795890 0.7795892 0.7795892 0.7795882 0.7795886 0.7795889 0.7795886  

Map -3.4319537 -3.3984483 -3.3984477 -3.3984490 -3.3984455 -3.3984468 -3.3984470 -3.3984586  

100,100 

Baise 11.7784328 11.5494513 11.5494468 11.5494559 
11.549431

9 
11.5494410 11.5494424 11.5495212  

MSES 0.7872751 0.7795892 0.7795890 0.7795893 0.7795885 0.7795888 0.7795889 0.7795915  

Map 11.5495079 11.5498440 11.5495149 11.5494231 
11.549437

9 
11.5494424 11.5503319 11.5503319  

 

5. The Conclusions  

In this work, simulation were conducted for different values of parameters , and in Tables (1-4) for random data, 

two cases were set for the values of  and  when is greater than  and vice versa, we conclude the 

following: 

1- The MSE value decreases with increasing sample size (n, m) for all the factors mentioned below. 

2- When the value of α decreases, the estimated stability value decreases. 

3- When , the (Sh3) method is the best. 

4- When , the estimation methods alternate with each other depending on the sample 

Size.but the best methods are (Sh3, MLE, LSE, WLS), respectively. 
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