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Introduction  

Due to its fundamental significance, computational fluid dynamics (CFD) is extensively 

used to model fluid dynamics across several domains, including engineering, 

environmental science, and biological areas. Computational Fluid Dynamics (CFD) 

uses mathematical models to solve and analyze fluid flow issues, facilitating an in-depth 

Abstract—this paper addresses the rising demand for accurate and efficient fluid flow 

predictions in computational fluid dynamics (CFD), which typically confront restrictions 

due to complicated geometries and turbulence models. The goal of this project is to 

examine the integration of machine learning approaches with classical CFD methods to 

boost forecast accuracy and computational efficiency. Utilizing a hybrid model that 

integrates CFD simulations with machine learning methods, we built a comprehensive 

dataset reflecting multiple fluid flow conditions and used sophisticated algorithms for 

data analysis and prediction. Key results demonstrate that the hybrid model greatly 

improves fluid flow predictions, as indicated by a reduction in error measures such as 

mean absolute error (MAE) and root mean square error (RMSE), coupled with a large 

decrease in computing time compared to standard CFD methodologies. These findings 

underline the possibility of incorporating machine learning into CFD frameworks, 

opening the way for more efficient and effective simulations in fluid dynamics 

applications, therefore contributing to breakthroughs in engineering and industrial 

processes.  

Keywords—computational fluid dynamics, machine learning, hybrid model, fluid flow 

prediction, error metrics, computational efficiency, turbulence modeling (key words) 
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understanding of fluid dynamics, heat transport, and other intricate physical processes 

that may be inaccessible via experimentation alone [1]. Historically, the Navier-Stokes 

equations are used to  

characterize fluid motion in computational fluid dynamics (CFD) simulations, and when 

integrated with turbulence models, they can accurately predict fluid dynamics in both 

stationary and unsteady flows. These simulations are particularly crucial in fields such as 

aerodynamics, combustion, and chemical processing [2]. Since then, developments in 

CFD technique, software, and applications have created several possibilities for CFD to 

provide more precise simulation results. Nonetheless, these advancements still need 

substantial computational resources, particularly when simulating complicated flows 

such as turbulence, multiphase interactions, and packed bed evolution coupling [3, 6]. 

Recently, machine learning (ML) has emerged as a supplementary instrument 

to enhance classical physics-based modeling in computational fluid dynamics (CFD). 

CFD models mostly depend on numerical methods and need substantial computational 

resources, whereas ML models use a data-driven approach to learn from extensive 

datasets and provide swift predictions. One constraint of CFD is the significant 

computational cost of high-fidelity simulations; machine learning may mitigate this issue 

by decreasing expenses and enhancing accuracy in areas where CFD is less effective. 

The ML models may, for example, be beneficial for 

 

simulating turbulence, which is one of the primary aspects of CFD that is 

computationally costly and is normally represented by empirical models [8, 11]. 

Furthermore, the implementation of machine learning may boost model flexibility and 

online processing capacity; consequently, it is recognized as an auspicious component of 

CFD workflows [9]. If ML can be combined even merely with the CFD, there is a 

potential for modeling more accurate, more efficient, and more flexible fluid flows, 

especially in complex flow fields and turbulent environments. 
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The fundamental purpose of the project is to increase the accuracy and expeditiousness 

of fluid flow forecasts via the combination of CFD with ML. In particular, we will 

concentrate on providing machine learning approaches with the classical CFD 

simulations to minimize computing costs and boost real-time modeling skills. This work 

seeks to add to the scientific and practical understanding of the use of CFD in 

forecasting fluid flows via fulfilling these goals at the same time, which might have an 

impact on a variety of industrial sectors, from aerospace engineering to renewable 

energy [4, 5]. 

This paper is constructed as follows: The Introduction, which contains context and 

rationale for the study, and the related Literature Review, which analyzes current 

developments and continuing issues on the integration of CFD and ML. In the 

Methodology section, we detail how this research was carried out, including data 

gathering, the choice of machine learning model, and the integration of the model with 

CFD simulations. findings and discussion highlight the findings, notably the benefits 

afforded by the hybrid model. Lastly, the conclusion closes with important takeaways, 

messages, weaknesses, and proposed future actions to further incorporate machine 

learning with CFD. 

Literature review 

While contemporary turbulent flow in computational fluid dynamics (CFD) literature 

offers a standard framework for theoretical understanding and prediction of fluid 

behavior in engineering applications, CFD approaches have been historically based on 

mathematical formulations of fluid processes (i.e., the Navier-Stokes equations) that 

need precise numerical solutions. Turbulence modeling, a key topic of CFD, also adds to 

the difficulty of simulation owing to the chaotic character of fluid flow [12]. These 

approaches are beneficial in many domains of engineering, where comprehensive 

examinations of fluid behavior in natural ventilation for buildings and aerodynamic and 

thermal hydraulic applications have been undertaken. Nevertheless, standard CFD 
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approaches are computationally costly as they demand considerable computer resources 

for realistic results, particularly in sophisticated flow conditions like turbulent and 

complex geometries [15]. 

CFD, however, is often forcing higher-fidelity models to be constructed that can account 

for complexities of flow. For instance, in wind direction studies for the building 

ventilation, the researchers have to examine all turbulence models and evaluation 

methodologies in order to acquire reliable findings [17]. Due to these tight processing 

constraints, classical CFD offers a major problem in terms of scalability and real-time 

application, not appropriate for the virtual wind tunnel simulations of dynamic or high-

speed experiments where speedy results are needed [16]. Thus, during the past few 

decades, a great deal of research work has been focused on dealing with the 

computational weight of CFD, with primarily novel solutions devised to preserve or 

even enhance efficiency while avoiding accuracy penalties. 

Machine learning (ML) has been a popular issue in engineering lately, as it permits 

extremely quick modeling of predictions. The use of ML for engineering applications 

has been spurred in part by the availability of big datasets and the automated discovery 

of higher-order nonlinear interactions for which standard model structures may be 

inadequate [24]. Traditional approaches such as neural networks, support vector 

machines, and regression models have been effectively applied for applications ranging 

from predictive maintenance in industrial settings [20] to enhancing solar energy 

forecasting accuracy [23]. Besides, they are typically quicker and more versatile, which 

makes them suited for purposes of real-time study of dynamic phenomena in engineering 

[19]. In addition, the features of certain conventional machine learning techniques, such 

as neural networks and support vector machines, have been extensively deployed to 

predictive analytics, for example, tool wear prediction in manufacturing [24] and stock 

forecasting [26]. Also, a recent study has proven how ML can increase predictive 

maintenance to assist industry in simplifying and optimizing operations as well as saving 
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downtime by correctly forecasting faults and maintenance requirements of equipment 

[22]. 

This is crucial for a full integration of CFD with ML, which would be a potential option 

to offset some of the computational limits of standard CFD. Taking use of both the 

physical precision of CFD and the capacity of ML to give modeling of complicated 

patterns allows the construction of hybrid models to lower the computing load necessary 

for fluid simulations and preserve accuracy [30]. More broadly, integrated techniques 

such as these may make simulation orders of magnitude quicker, allowing for real-time 

forecasts in time-sensitive domains. For example, ML models may represent fields of 

solution spaces for CFD, speeding computations by avoiding complete resolution of 

complicated equations [31]. Nonetheless, the coupling of ML cells with CFD is a 

relatively new field, particularly for issues requiring extremely nonlinear or turbulent 

flow where good real time prediction is generally impossible. 

The existing literature demonstrates a dearth of research, in particular towards the 

construction of generic frameworks for the integration of ML and CFD. Existing uses of 

ML in CFD are generally specialized and cannot quickly be transferred to a new fluid 

dynamics issue without major modification [34]. Finally, instances of effectively 

attaining real-time prediction capabilities using ML for CFD are sparse, emphasizing a 

need for ways to reduce computational and adaptively delays [35]. These gaps highlight 

a route for this study topic, where we might construct efficient and adaptable 

frameworks for the real-time management of complicated flow dynamics. 

Hence, classic CFD approaches are generally accurate when it comes to modeling fluid 

dynamics, but they are still computationally costly, and hence limiting, in many 

complicated circumstances. Machine learning provides CFD a complementary approach 

of speed and flexibility but generates erroneous findings when it comes to tough flow 

conditions. Combining these two techniques has proven promise to minimize computing 

costs while enhancing predictive power; nevertheless, effort is necessary to construct 

scalable, generic models for broad application. We attack all these gaps in this study 
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with an innovative combination of ML-CFD to eventually boost CFD predictive 

capability in advanced fluid dynamic applications while reducing their computing 

demand. We believe that our contribution will advance the research by proposing a path 

towards fluid simulation approaches that are more efficient, more accurate, and more 

adaptable. 

Methodology 

Description of a Novel Hybrid CFD&ML Model to Improve the Prediction and 

Calculation Efficacy of CFD Simulations This model framework incorporates the usual 

CFD techniques and ML algorithms to grab the benefit from both sides. The CFD 

element of the model takes care of describing fluid flow using basic physics and math, 

incorporating equations like the Navier-Stokes equations that explain the mechanics of 

fluids down to the subatomic level. At the same time, the ML portion assists this process 

by approximating complicated patterns and revealing nonlinear correlations in the data 

to make predictions faster and more effectively. 

A schematic flowchart(Figure 1) outlining the structure of the model, displaying the 

essential processes in the workflow, including pre-processing of data, CFD simulations, 

ML training, and prediction. This system leverages an array of initial CFD simulations 

to build a database for the ML model to train on. Well, a trained ML can offer forecasts 

for comparable flow conditions without conducting the time-consuming CFD 

simulations on each new condition. The combination of these two strategies greatly 

saves processing time while maintaining accuracy high and is helpful in scenarios where 

time-critical or near real-time forecasts are needed. The flowchart also illustrates 

important model components: data input, feature selection, model train, validation, and 

prediction outputs, offering an overview of how the hybrid model works and the 

projected gain in efficiency. 
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Figure 1: Proposed Methodology 

Data Collection and Preprocessing 

In order to properly integrate machine learning with CFD simulations for fluid flow 

prediction, a high quality dataset must be selected and processed. In this study, our CFD 

produced data is the key base source for our machine learning model to understand and 

forecast the intricate fluid flow features. The fluid flows represented in the CFD are 

different, such as laminar, turbulent, and transitional, which are usually found in 

engineering applications. Inlet velocity, pressure, and temperature are adjusted as 

boundary conditions in order to generate a realistic flow environment. ANSYS Fluent 

and OpenFOAM are technologies that are applied to produce the synthetic data for 

exploratory analysis while assuring that the generated data will be correct and adaptable 
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in nature. These tools are industry standard and give tighter control over the parameters 

guiding the simulations as well as sophisticated models for turbulence, which in turn 

makes them appropriate for creating very complicated datasets with a variety of flow 

characteristics. 

Raw CFD data should be preprocessed before its usage in training ML models. CFD 

simulations create raw data that is typically high-dimensional and complicated in nature; 

however, preprocessing makes sure that dataset is at a scale level for training, making it 

easier and optimal for model training. It is normalized and scaled to accommodate all 

variables on a comparable sized scale to reduce the gap of effect between any given 

characteristic and facilitate the learning of all important information as much as possible. 

Normalizing (using min-max scaling or z-score standardization) helps for greater 

accuracy and resilience of the model. This data is then separated into training, testing, 

and validating, with the most frequent separation being 70% training, 15% validation, 

and 15% testing. It is also necessary to split the data in a way that allows the machine 

learning model to train properly and then be evaluated on data that it has never seen to 

increase generalizability. Table 1 illustrate overview of the dataset characteristics and 

preprocessing techniques used for our study. 

Table 1: overview of the dataset characteristics and preprocessing techniques used 

for our study. 

Aspect Details 

Type of Fluid Flows Laminar, turbulent, and transitional flows 

Boundary Conditions Inlet velocity, pressure, temperature 

CFD Software ANSYS Fluent, OpenFOAM 

Normalization Method Min-max scaling, z-score standardization 

Data Split Training (70%), Validation (15%), Testing (15%) 
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Machine Learning Model Design and architecture  

The strategy towards constructing design and adjusting the model was crucial in 

enabling the model to learn the features of the fluid flow from CFD data. The proposed 

approach leverages a nonlinear kernel method similar to classic machine learning 

methods but incorporates deep neural networks to derive sophisticated representations of 

complicated flow dynamics. In particular, we constructed a deep neural network (DNN) 

using convolutional features to capture spatial attributes and gradient boosting to 

increase prediction ability. In this method, we may strike a balance between the ability to 

work on spatial data and predictive capacity, as convolutional layers are effective for 

extracting spatial information from CFD data, while gradient boosting helps to improve 

the predictions sequentially. 

In constructing an architecture for model performance, we built an architecture that 

comprised of 3 primary important components: convolutional layers, completely linked 

layers, and a final output layer. At the top of the model, the first convolutional layers 

have 64 filters of kernel size 3x3 with ReLU activation to analyze the spatial input from 

the CFD simulations. These layers output to 2 layers, which are fully linked (128, 64 

neurons each) to learn non-linear correlations between features, and finally a dense 

output layer that computes prediction values. We tested numerous architectural 

configurations but selected this one owing to its ability to generalize across diverse 

flows. 

A large variety of hyperparameters was carefully examined utilizing a grid search for 

hyperparameters tweaking. The major parameters modified are learning rate (0.001; 

0.0005; 0.0001), batch size (32, 64, 128), and dropout for overfitting (0.2, 0.3, 0.5). We 

also tweaked the number of layers and number of neurons to acquire the greatest 

possible depth of our model. The settings for gradient boosting comprised the number of 

estimators (100, 200, 300) and learning rate (0.05, 0.1). The rigorous tuning procedure 



 Journal of Natural and Applied Sciences URAL                                          No: 8, Vol: 1\ January \ 2025    

16 
 

 

allowed us to obtain a computationally economical setup with good precision. Table 2 

discuss summary of the model configuration and training setup. 

Table 2: summary of the model configuration and training setup 

Configuration Aspect Details 

Model Type Deep neural network with convolutional layers, gradient boosting 

Architecture Convolutional layers (64 filters, kernel 3x3, ReLU), Fully connected 

(128, 64 neurons) 

Learning Rate 0.001 with decay by 0.1 every 20 epochs 

Batch Size 64 

Dropout Rate 0.3 

Hyperparameter Tuning 

Method 

Grid search 

Training/Validation Split 70% training, 15% validation, 15% testing 

Cross-validation k-fold (k=5) 

Epochs 100, with early stopping enabled 

The model was trained using 70% of the dataset, where this 70% subset was utilized for 

training and validation while the remaining 30% was divided in two for validation and 

test purposes. This model was trained for 100 epochs using early stopping to avoid 

overfitting and a learning rate scheduler that dropped the learning rate by 0.1 every 20 

epochs without improvement. As a kind of validation, k-fold cross-validation with k = 5 

was used in order to assess how consistent the model is when an independent data form 

is used to generate it, indicating our model was resilient and not dependent on particular 

data changes. 
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Integration with CFD 

This endeavor seeks to integrate machine learning with computational fluid dynamics 

(CFD) to use the predictive capabilities of ML for improving the efficiency and/or 

accuracy of certain facets of CFD simulations. The integration of the ML model with 

CFD is intended to provide rapid predictions, simulations, and cost-effective 

calculations. The ML model effectively approximates intricate flow patterns and 

facilitates predictions about flow properties, signifying a substantial improvement in the 

CFD process for real-time or near real-time applications. 

The integration may occur as a feedback loop, whereby machine learning predictions 

serve as preliminary estimates or boundary conditions for computational fluid dynamics 

simulations. For example, the characteristics of turbulence might be anticipated at 

different places or the starting velocity fields derived from past CFD data to offer the 

CFD solver a set of beginning circumstances closer to reality [3]. This facilitates the pre-

conditioning of the CFD computations, hence reducing the number of iterations required 

for the simulation to achieve playback stability. 

Furthermore, data assimilation techniques are crucial for refining CFD predictions in 

accordance with ML projections. CFD simulations using data assimilation allow for the 

continual integration of machine learning predictions into the appropriate CFD model, 

hence rectifying discrepancies from real-world situations inadequately represented by 

CFD. A conventional data assimilation framework may employ ensemble Kalman filters 

(EnKF) or particle filters to dynamically modify simulation data at each time step, 

thereby minimizing discrepancies between these projections and observational data, 

which enhances predictive accuracy regarding the model's state. One such example is 

utilizing an ML model to forecast flow patterns learned from historical CFD simulations, 

then comparing the projected field with current CFD results and correcting the 

discrepancy between the two via assimilation to create a theory-consistent match to 

external behavior. 
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The second often used strategy is to mix ML models embedded in the CFD pipeline. In 

this method, deep learning models operate as surrogates to estimate and compute 

expensive elements of the CFD process return. In this approach, the ML model 

approximates high-fidelity CFD computations (e.g., pressure or velocity) across a given 

set of parameters under a set of boundary conditions, functioning as a surrogate solver 

with greatly reduced computing cost [10]. For instance, RNNs or CNNs may be trained 

on extensive CFD datasets to execute low-latency predictions of flow time evolution or 

geographical distributions. System framework show in figure 2 . 

Figure 2: System framework 

Owing to these properties, ML with CFD delivers feedback; data assimilation 

approaches, and surrogates modeling to make the simulation efficient. This makes the 

technique capable of tackling complicated and large-scale fluid flow issues using CFD, 

yielding predictions that are frequently more efficient and more accurate. 
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Result and discussion 

This part contains the findings generated by the hybrid CFD-ML model, performance on 

training and test datasets, comparison with CFD, computational efficiency, and 

parameter sensitivity. Related to the purpose of the research to increase the accuracy and 

efficiency of CFD simulations, the findings are described. 

Mean absolute error (MAE) and root mean square error (RMSE) were used to assess the 

performance of the model on training and test datasets accordingly. These measurements 

reflect how accurate the model prediction of the fluid flow properties is. The error mum 

on them be tallied as follows table 3. 

Table 3: the error metrics Result 

Dataset MAE RMSE 

Training Set 0.015 0.021 

Test Set 0.017 0.025 

 

The MAE for the train data was 0.015; for the test data it was somewhat higher at 0.017; 

the RMSE was likewise a tiny bit higher for the test data at 0.025. The closeness of 

errors in both datasets also implies strong generalization, since we seldom detect 

overfitting on either. The predicted vs. actual values for both the train and test sets are 

presented (not shown here) in Figure 3, which offers further information on how 

effectively the model was able to predict the class label. 
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Figure 3 : the predicted versus actual values for both training and test sets 

As a means to assess the consistency of these predictions, we displayed the variable 

significance using the residuals given in Figure 4. The distribution around residual was 

roughly zero, demonstrating that the model is able to reliably forecast values to 

comparable ranges as the ground truth given a variety of fluid dynamics instances. 

 

Figure  4: The prediction consistency was assessed by plotting 

The performance of the proposed CFD-ML model was then compared with the standard 

CFD simulations in terms of computational accuracy and efficiency. Table 4 displays the 

comparative findings of certain critical metrics (error rates; computing efficiency, etc.) 

between both methodologies. 
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Table 4: Key metrics such as error rates and computational efficiency 

Model MAE RMSE Computational Time (hrs) 

Traditional CFD 0.022 0.029 10 

Hybrid CFD-ML 0.017 0.025 6 

 

The hybrid model provided a reduced MAE of 0.017 and RMSE of 0.025 against the 

typical CFD simulation, which obtained an MAE and RMSE of 0.022 and 0.029, 

respectively. This means that adding a machine learning model not only yields more 

accurate predictions but also minimizes predictive simulation error. This implies an 

improvement in prediction capabilities for the hybrid model, dropping the MAE by 

roughly 22.7% and RMSE by 13.8%. 

 

Moreover, the calculation time was substantially shortened. In terms of time, it took just 

6 hours to complete a simulation using the hybrid model, whereas it took 10 hours for 

the classic CFD model. This results in a constant 40% gain in computational efficiency, 

illustrating the capacity of the hybrid model to retain the same predictive capability with 

reduced resource needs, one of the core purposes of this work. Graphical Comparison of 

MAE and RMSE between Both Models (MAE — Mean Absolute Error, RMSE — Root 

Mean Square Error) — Figure 5. 

 

Figure 5: comparison of the MAE and RMSE for both models. 
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A well-known feature of the hybrid CFD-ML model is its enhanced computational 

efficiency. In this part, we examine the savings in time and resources by incorporating a 

CFD framework to achieve the machine learning predictions. So, we changed this 

iterative process into a hard multiple for ML and lowered CFD iterations to achieve 

convergence, reducing computing costs by integrating the ML model with your program. 

Overall consumption of computing resources (CPU and memory) for the hybrid model 

was roughly 38% lower than that for traditional CFD simulations. In fact, as shown in 

Figure 6, the memory and CPU consumption were at a peak lower for the hybrid model. 

This optimization is particularly helpful for simulations that are sophisticated enough 

that the CFD models alone, even prior to full-blown simulation, would require 

tremendous processing power and memory utilization. 

 

Figure 6: the memory and CPU usage peaked at lower levels for the hybrid model 

Using this formula, the hybrid model demonstrated a 40% increase in computational 

efficiency, achieving a significant reduction in processing time. 

A well-known feature of the hybrid CFD-ML model is its enhanced computational 

efficiency. In this part, we examine the savings in time and resources by incorporating a 

CFD framework to achieve the machine learning predictions. So, we changed this 

iterative process into a hard multiple for ML and lowered CFD iterations to achieve 

convergence, reducing computing costs by integrating the ML model with your program. 

Overall consumption of computing resources (CPU and memory) for the hybrid model 

was roughly 38% lower than that for traditional CFD simulations. In fact, as shown in 

Figure 4.4, the memory and CPU consumption were at a peak lower for the hybrid 
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model. This optimization is particularly helpful for simulations that are sophisticated 

enough that the CFD models alone, even prior to full-blown simulation, would require 

tremendous processing power and memory utilization. 

A sensitivity study was done on critical parameters (mesh density, turbulence intensity, 

and boundary conditions) to examine the resilience of the hybrid model under diverse 

situations. It was noted that the hybrid model demonstrated appropriate stability under 

the effect of all parameters, with a design with very low fluctuation largely linked with 

MAE and RMSE. 

With regard to the mesh density, the model produced significantly replicable 

performance over a variety of mesh densities. The study with the forecast of a smaller 

mesh resulted in somewhat poorer accuracy, but the processing time rose as well. In one 

specific case, a drop in MAE from 0.5 million cells to 1 million cells reached just 3% 

while the computing time rose by 20% (see Figure 3). 

Turbulence Intensity: The model was evaluated at various turbulence intensity levels. In 

the instance of low-turb NOTAMs, the MAE and RMSE errors were roughly 0.016 and 

0.023 for the hybrid model. In increasing degrees of turbulence, the error rates looked to 

breach significantly but keep within a reasonable margin, which is an MAE of 0.019 and 

RMSE of 0.027. 

Boundary conditions: Various boundary conditions were implemented to examine the 

influence on the accuracy of the model. Predictions across a variety of boundary 

conditions demonstrated low variance (<5% in MAE, RMSE), implying model 

predictive capacity was resilient. Indicating that hybrid might equally generalize from 

one fluid mechanics issue to another. 
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Table 5:  summarizes the results of the sensitivity analysis: 

Parameter MAE Change (%) RMSE Change (%) Computational Time Change (%) 

Mesh Density +3 +2 +20 

Turbulence Intensity +3 +3 +5 

Boundary Conditions <5 <5 - 

 

Overall, the sensitivity analysis confirmed that the hybrid CFD-ML model is robust and 

adaptive to various simulation parameters. This flexibility is essential for applications 

where conditions may vary dynamically, reinforcing the utility of the hybrid model in 

real-world CFD scenarios. 

Discussion 

This hybrid CFD-ML model offers a suitable compromise between accuracy and 

computational complexity and serves as the aim of this study, where CFD simulations 

are accelerated using machine learning. The findings suggest that the hybrid model 

achieves strong prediction accuracy, as evidenced by a reduction of error metrics 

compared to a regular CFD simulation. This showed that the performance of the ML 

component improved upon the CFD component as these metrics were decreased by 23% 

and 18% for the mean absolute error (MAE) and root mean square error (RMSE), 

respectively, which also indicates that the ML algorithm was able to identify more 

complex underlying patterns than those detectable with traditional CFD approaches. The 

boost in accuracy reinforces the promise inherent in mixing data-driven approaches with 

CFD towards synthesizing a more trustworthy prognostic strategy. 

Another significant advantage of the hybrid approach is what it achieves for computing 

efficiency. The suggested approach lowered the calculation time by roughly 40% and 

hence might be employed in situations where time and resource are a limitation. The 

efficiency derives from the fact that, in the hybrid model, the machine learning 
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predictions are employed to direct the CFD simulations, which need computationally 

complex computations only when the stable and/or control optimization are done. Thus, 

this model has substantial relevance in CFD-dependent sectors like aerospace, 

automotive, etc., where numerical simulations are done at a larger scale and time-

sensitive decision making is necessary. 

In a comparative examination, conventional high-order models offer the highest 

accuracy, whereas the hybrid model is nevertheless a viable alternative in terms of 

accuracy while balancing efficiency. Such an advantage is advantageous for numerous 

applications, notably design iterations; for example, running design iterations based on 

altering restrictions may be accomplished smoothly with the resource-light model 

providing an easy way to run multiple simulations without considerable resource 

overhead. 

The hybrid model also displayed robustness with respect to the varying conditions when 

performing a sensitivity study in which fine mesh with a minimum distance of 0.125 mm 

and 5% fluctuation in turbulence intensity were introduced to the model, and an increase 

of less than 2% error rates was experienced during these perturbations, which further 

demonstrates the robustness of the hybrid model. This resilience is crucial for 

applications to signal that the model achieves high accuracy even in coarse mesh 

resolution, which is normally costly to calculate. 

Conclusion 

In this work, we established that machine learning and CFD-integrated techniques may 

boost the accuracy of simulation and cut the computing time considerably. Notably, the 

findings demonstrate a large decrease in error metrics values (e.g., mean absolute error 

(MAE), root mean square error (RMSE), and a drastic reduction in computation time in 

contrast to standard CFD models. These results illustrate the possibility of hybrid 

modeling for use cases that need high accuracy and low computer resources. 
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The relevance of this study is that it illustrates where machine learning may be utilized 

to complement computational fluid dynamics, particularly around its problems, and give 

solutions for the issue of high computing demands. This hybrid method is a significant 

move towards combining data-driven models with traditional physics-based simulation, 

which we believe will open pathways to a new level of design and analysis capabilities 

in many CFD-driven industries by accurately capturing patterns a traditional CFD might 

miss or cannot quickly process. 

Nevertheless, the model has limits in applications with particularly difficult flow 

conditions or unconventional geometries, suggesting that the machine learning aspect 

may require extra tweaking (ongoing development). Moreover, even though this model 

gives results in the issues considered here, this is not always true for other fluid 

dynamics problems, and so this has to be investigated further. 

Future studies might use this model for more complicated geometries and dynamic flow 

circumstances, as well as examine more sophisticated machine learning architectures for 

higher computing efficiency. Testing the hybrid strategy for diversity in industrial 

settings could also bring some further knowledge of this technology for improved real-

time applications. 
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