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Abstract

Within this research, we will study the relationships between Neutrosophic
torsionless cyclic (R U I)-module and Neutrosophic quasi-Frobenius rings. Some
implications yeld cyclic (R UI)-module and hence Neutrosophic quasi-
Frobenius ring have been presented. In addition we study the relations between
isomorphic Neutrosophic Noetherian ring and Neutrosophic quasi-Frobenius (Q-
F) ring. Additionally, we present an important relation between Neutrosophic
torsionless cyclic module, projective module and Neutrosophic injective module
which through we get an Q-F ring. Finally, we study some concepts such as;
Neutrosophic hollow module, Neutrosophic local module and Neutrosophic

simple module which its relationship to the quasi-Frobenius rings.

Keywords: Quasi-Frobenius rings, Noetherian rings, torsionless, cyclic module, Hollo
Module.
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1. Introduction

A Neutrosophic Artinian ring is a Neutrosophic ring that satisfies the
descending chain condition on (one-sided) ideals; that is, there is no infinite
descending sequence of ideals. A Neutrosophic ring R U I is referred to as quasi-
Frobenius if it is (left or right) self-injective and (left or right) Artinian,
equivalently, on which side it is self-injective and which side it is Noetherian. A
right n-injective ring R is defined as one in which each homomorphism of an n-
generated right ideal to R extends into an endomorphism of R. This definition is
one of several generalizations of the notion of self-injective rings. [1]. The
concept of rings that are Frobenius and quasi-Frobenius are generalized by many
authors. In (1941), Nakayama, Tadasi presented a study on Frobeniusian algebra
[2]. In (1950), Ikeda, Masatoshi and Tadasi Nakayama submitted a study about
supplementary remarks on Frobeniusian algebras [3]. In (1956), the outher
studied both Hiroyuki Tachikawa, Kiiti Morita, and Morita Quasi Frobenius
rings, character modules, and free module submodules [4]. In (1958), Dieudonne’,
Jean provided some remarks about quasi-Frobenius rings [5]. In (1964), E. A.
Walker and Carl Faith proposed the concept about quasi-Frobenius rings on
characterizations [6]. And in (1996), Dinh van huynh demonstrated in her study
A Note on quasi- Frobenius rings [7]. Sets of fuzzy and Sets of intuitionistic fuzzy

have a generalization which is the Neurosophic set. According to Neutrosophic
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reasoning, There are three levels to a proposition: truth (T, indeterminacy (1),
and falsehood (F). There is a membership function for each component level of
involvement in the uncertainty issue, according to fuzzy set theory [8]. After that,
in 1983, K. Atanassov expanded fuzzy sets to include intuitionistic fuzzy sets on
universe X. In these sets, in addition to Membership degree p,(x,) € [0,1] for
any element x, to set A, non-members may also get a degree to function

va(xp) €[0,1] that are present, where x, € X, pa(xg) + va(xy) < 1[9].

2. Basic Concepts

In the present section, some fundamental terms that will be used later on are
defined.

Definition 2.1 [10]. Consider X as an universal set. Then a fuzzy set A within X
consists of ordered pairs; A := {(x, us(x)) : x € X }s.t, uy : X — [0,1], that
iIs known as the function for membership with x € X, the value from pu,(X)

represents the grade of membership of x in A.

Example 2.2: The universal set X is the group of people. The issue of whether
person x is young is addressed to that extent by the definition of B fuzzy subset
young? To each person in the universal set, We must allocate a degree for
membership inside the fuzzy subset "young." The most straightforward method
to do this is using the function of membership based on the individual's age.

1, age(x) < 20
pg(x) =<(30 —age(x))/10 , 20 < age(x) < 30
0, age(x) > 30

Definition 2.3 [11]. Assume that G is any group. Then this mapping u: G — [0 1]
forms the fuzzy group if Va,b € G:
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1) uCab) = min { pu (a), u(b)}.
2) W(a™) = p(a.

Example 2.4: Here we have the set S, which contains all possible random
variables for the space of probabilities (£2, ¢, P) and suppose that A is any subset
of the reals that is Borel and includes all subgroups from the reals that are
addizable. Note that S is a groupoid when added pointwise. (The extra structure
IS not necessary for our current goals, even if S is a group.) A function ¢,: S —
[0,1] define by @,(X) = P{w € 2 : X(w) € A} = P[X"1(A)]. Therefore, ¢,
represents the probabilities that X is “in” the subgroup A. A fuzzy subgroupoid

Is an obvious choice for the function ¢,.

Definition 2.5 [12]. Assume that R is a ring, A is a fuzzy set of R, we will refer
to A as a fuzzy ring of R, if

1) A(a—b) = A(a) NA(b),VY a,b € R.

2) A(ab) = A(a) NA(b),V a,b €R.

Example 2.6: Consider the set R = {0, x, y} , which contains a binary operation

(+) and a hyperoperation (+) as follows:

+1] 0 X y - 1o X y
0 | {0} {x} {v} 0 (0 0 0
x ({xy {0xy}  {xy) x |0 X y
y | {v} {x,y} {0,x,y} y |0 X y

Consequently aring (R, +,-) is a hypernear. A fuzzy set u : R — [0, 1] define by
w(x) = w(y) = 0.5 and p(0) = 1. Checking that p is a fuzzy subhypernear ring

from R may be done using basic computations.
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Definition 2.7 [13]. Assume that R is a ring. We referre to the fuzzy subset A of
R fuzzy ideal inRifV x,y € R,

1) A(x—y) = min{A(x), A(y)}.

2) A (xy) = max {A(x), A(y)}.

Example 2.8: Consider R is a ring. A fuzzy subset A define by: A(x) =r,Vx €
R and r € [0,1], then A is fuzzy ideal in R.
Note: If we replace [0, 1] with {0, 1} in the above definition, then a fuzzy ideal is

just the usual real ideal.

Definition 2.9 [14]. Assume that a fixed set A is non-empty. The Neutrosophic
set S Object having the format: S = {(4, us(a),as(a),ys(a)) : a € A} where
us(a),as(a) and ys(a) are represent a membership function's degree namely
us(a), ag(a) represents the degree of indeterminacy while yg(a) represents an

degree from non-membership for any a € A of S.

Example 2.10: Assuming the universe from discourse U = {x,, x,, x5}, where x;
describes the capacity, x, describes the reliability and x5 represents the item
prices Another such assumption is that that values of x,;,x, and x5 located in
[0,1] These are derived from surveys completed by professionals. Professionals
have the option to enforce their views in three areas: the degree to which things'
gualities may be explained by their goodness, indeterminacy, or poverty. Assume
that A is a set of Neutrosophic (NS) on U, where, A = {< x;,(0.3,0.5,0.6) >
,< x,,(0.3,0.2,0.3) >, < x3,(0.3,0.5,0.6) >}, such that 0.3 is the degree for
capacity goodness, degree for capability indeterminacy is 0.5 and 0.6 is the

degree of capacity falsehood, etc.

Definition 2.11 [15]. Assume any ring as R. Another ring that may be generated
underneath the operations of R by R and I is the Neutrosophic ring (R U I).
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Example 2.12: Assume that Z be any ring of integers; (ZUI) = {z; + z,1 :
z, ,Z, € Z}. An integer ring referred as the Neutrosophic ring is (Z U I). Also
Z<(Zub.

Definition 2.13 [16]. Let p = (pl,p/,pf) be any non-empty Neutrosophic
subset of a B-semiring A (i.e. anyone of u (a),’ (a) or uf (a) # 0; a € A).
Then p referred to as a Neutrosophic left ideal of A, V a,b € Aand Y € p if:

i (e + b) = min{p* (o), 1" D)} (ayp b) = p*(b)

J J (b
T W @ b) = W(b)

iii. p¥(a+ b) < max{p® (a),p® (D)}, 1 (@ b) < p* (b).
In the same way, the Neutrosophic right ideal of A may be defined.

ii. p (a+ b)

\%

Example 2.14: A and y are the semigroups of all not positive integers and all not
positive even integers respectively that are additive and commutative. After that
Aisaf -semiring if a Y b represents the represents multiplication from integers
a, ,¥,a, where a,,a, € A and y € B. Define a Neutrosophic subset p of A as
follows

(1,0,0)if w = 0
u(w) =< (0.8,0.3,0.4) if wis even
(0.3,.02,0.7) if wis odd

Then p of A is an ideal that is Neutrosophic.

Definition 2.15 [17]. Remember that in order for a ring A to be considered
Noetherian, it must meet the following three comparable requirements:

(1) maximum elements (the maximum condition) exist in all nonempty sets from
ideals of A.

(2) Every ascending sequences of ideals are stationary (the ascending chain
condition (A.C.C)))
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(3) Every ideal of A is f-generated.

Definition 2.16 [18]. An R-module is considered free if it is isomorphic to
another R-module of the type @;¢;M;, where each M; = R (in the sense that it is

an R-module). The notation for such a module is R,

Definition 2.17 [6]. Let R be a ring, M be R-module and defined g;: M —» M**
as: [oyy(m)](f) = f(my), f € M*, my € M. Then M is torsionless iff g, is a

R-monomorphism.

Definition 2.18 [19]. Assuming that M be an R-module also letm; € M,V i € I,
s.t. I represents some indexing set. Now if M = };c; Am,;, then {m;|i € I} is

referred to as the set generators of M.

Definition 2.19 [19]. For R-modules M with an finite number from generators,

S0 we say to be it is finitely generated.

Definition 2.20 [20]. If Z(M) = M, suchthat Z(M) = {m € M : ml = (0), for

some essential ideal I of R}. Then R-module M is said to be singular.

Definition 2.21 [21]. If for every homomorphisms R-module ¢: N — W and
Y:N — M where ¢ is injective, there exists an R-linear homomorphism
N:W — M suchthat 2 o ¢ = 3. Then R-module M is said to be injective.

Definition 2.22 [22]. Let M @ K is the free R-module s.t. K is each module on

R. After that an R-module M is said to be projective.

Definition 2.23 [23]. All proper submodules of the non-zero R-module M must

be small submodules of M for M to be a hollow module.
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Definition 2.24 [24]. The R-module M that is non-trivial is referred to as semi

hollow if all proper submodule from M is a semi small submodule from M.

Definition 2.25 [18]. An R-module M is referred to as local lifting if a module M
have the maximal submodule N that is unique. There are a submodules A and B
of Nwhere M = A @ B and N n B is small submodule of B.

3. Auxiliary results
We begin with the following lemmas which needs its in the our main results.

Lemma 3.1. [25]. Consider a ring R is Noetherian. Hence, the following criteria
are equivalent:

1) R isan Q-F ring.

2) All R-module is submodule from free R-module.

3) All R-module is torsionless.

4) All f-generated R-module is torsionless.

5) All f-generated R-module represents submodule of an free R-module.

Lemma 3.2. [26]. Assume that C is an cyclic R-module. We say C = R/ A such
that A is an ideal in R.

1) C* = ann (A) as an R-modules.

2) Cis torsionless if and only if A is annihilator.

3) C is reflexive if and only if A is annihilator and all R-homomorphism

ann(A) — R yields the result of multiplying by an element of R.

Lemma 3.3. [27]. The ring R is said to be Q-F iff it is a ring that is Noetherian in
addition to relationships s(d (1)) = I and d(s(J)) = J are applicable for all ideals
Jand I from R.
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Lemma 3.4. [28]. Assume that M is a module. Then a module M is considered an
f-generated hollow module iff it is has a unique maximum submodule and is

cyclic.

Lemma 3.5. [29]. The Noetherian state of R/socle(R) and the injectivity from
every simple R/socle(R)-modules follow based on the reality that every cyclic
singular R-modules are injective.

Lemma 3.6. [30].

Consider the ring R where each cyclic is injective. In such case, R is an Artinian

semi simple.

Lemma 3.7. [31]. These two options are analogous:
1) All cyclic modules in a ring R are extensions from injective modules in a
projective module.

2) It is true that all singular module certainly injective.

Lemma 3.8. [18]. Assume that the module M is an f-generated. Then M is local

lifting iff M has a unique maximum submodule and is cyclic.

Lemma 3.9. [18]. Assume that M is an R-module. M /N is local lifting module if

M is local lifting module for all N proper submodule of M.
Lemma 3.10. [18]. Every a local lifting module is indecomposable module.

Lemma 3.11. [18]. Assume that M is R-module. A module M is local lifting iff

M is a lifting and cyclic module.
4. Main Results

In this part, we present some different rings and modules and their relationship

with the Neutrosophic Quasi-Frobenius Ring.
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Definition 4.1. A Neutrosophic ring (R U I) is referred to as Neutrosophic self-
injective ring if (R U I) represents injective as the Neutrosophic module on itself

(i.e., (R U 1) is Neutrosophic injective as a left or right (R U I)-module).

Example4.2: Let (RUI) = (ZUl)/n(Z U 1) foranyintegern > 1. Then (R U
I) is a Neutrosophic self-injective. Because (ZUl)/n(ZuUl) is a finite
Neutrosophic ring, hence Neutrosophic Artinian, and it is Neutrosophic quasi-
Frobenius ring implies that it is Neutrosophic self-injective. In addition, as a
Neutrosophic module over itself, every homomorphism from as Neutrosophic
ideal into (RUI) extends to all of (RUI). Thus, (ZUl)/n(ZUI) is a

Neutrosophic self-injective ring.

Definition 4.3. A Neutrosophic ring (R U I) is said to be Neutrosophic Artinian
If (R U I) satisfies the descending chain condition (D.C.C): all descending chain
from Neutrosophic ideals of (RUI), (KU 2(K;ul)=2---2(K,Ul) 2

(K41 UI) 2 - - - isstationary.

Example 4.4: Assume (K(t) U ) is the Neutrosophic polynomial ring in the
variable t accompanied with coefficients in a Neutrosophic field K. Then for each
positive integer n, the residue ring consisting of (K(t) ul)/(t™) is both
Neutrosophic Artinian and Noetherian. Reason being, a vector space (K(t) U

1)/(t™) is finite and has n dimensions.

Definition 4.5. Any Neutrosophic ring that does not have an infinite escalating
chain from right (or left) Neutrosophic ideals is referred to as left (or right)
Neutrosophic Noetherian.

In this particular instance from above definition we say that the ring satisfy the
(A.C.C) on the left (or right) Neutrosophic ideals.
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Note: A Neutrosophic ring (R U ) is called Neutrosophic Noetherian if it is
Neutrosophic Noetherian both left and right.

Example 4.6: Consider the Neutrosophic ring from integers (Z U I). Look at an
Neutrosophic ideal in (ZuUI) of the form (KUl) = (6l)={6nl|nl € (ZU
1)} are f-generated by the single element 61. In fact, every Neutrosophic ideal in
(Z U 1) is generated by one integer. Therefore, all Neutrosophic ideals are f-

generated. Hence (Z U I) is an Neutrosophic Noetherian ring.

Definition 4.7. If (R U ) is a Neutrosophic self-injective and Neutrosophic
Artinian ring, or if it is Neutrosophic self-injective and Neutrosophic Noetherian

ring, then it can be called Neutrosophic Q-F ring.

Example 4.8: Where m is any positive integer and (R U ) represents an
Neutrosophic integers ring. After that, an Neutrosophic quotient integers ring
modulo m is Neutrosophic Q-F ring because (RUI) is an Neutrosophic

commutative, finite and primary ideal.

Theorem 4.9. An Neutrosophic Noetherian ring (R U I) is referred to as Q-F iff

all cyclic (R U I)-module is torsionless.

Proof: Assuming that (R U I) is Neutrosophic Q-F, we know from [32, Exercise

15.7] also Lemma 3.1, all Neutrosophic (R U I)-module is torsionless.

Conversely, assuming all Neutrosophic cyclic (R U I)-module is torsionless.
Through Lemma 3.2, we have each Neutrosophic ideal from (RUI) is
annihilator. Considering (R U ) is Neutrosophic Noetherian, (RUI) is

Neutrosophic Q-F from Lemma 3.3.
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Theorem 4.10. All torsionless cyclic Neutrosophic (R U I)-modules that not
iIsomorphic into R and are injective are defined for a Neutrosophic ring (R U I).
After that (R U I) is Q-F ring.

Proof: Assuming (R U I) is the Neutrosophic ring also assume that (M U I) is
Neutrosophic torsionless cyclic module and it is not isomorphic into (RU ) is
injective. Then Lemma 3.5, refer to (R U l)/socle(R U ) is a Neutrosophic
Noetherian. If socle(RUI) # 0, after that (RUI)/socle(RUI) is a
Neutrosophic semi simple Artinian by Lemma 3.6, because all quotient of that is
annihilated through socle(RuUl), and (RUI) is not. Assume (RUI) #
socle(RUI). Let yle (RUl), yI(RUI) /socle(yI(RUl)) simple. If
socle( yI(R U 1)) is length that is not finite, afterward

socle(yI(RUI)) = S&@T @ U,

where the lengths of S, T and U are infinite. Because for yI(R U I) then S is not
direct summand, yI(R U I) /S is not projective. Hence yI(R U I) /S is injective.
ThenT @ U embedsinyl(RUI) /S,andyI(RUID)]S = E(T)®E(U)®K
Regarding a few injective hulls related to Uand T. Then yI(RUI) /(ST &
U) = E(T)/T @ E(U)/U @ K It's not simple, an incongruity. Consequently
the socle from yI(R U I) has the length a finite. Since any simple submodule
from (RUI) is injective, the socle from yI(R U I) is direct summand from
yI(RUI) also yI c socle(RUI). Consequently (RUI) = socle(RUI) is
semi simple Artinian. Hence (RUI) is Neutrosophic Noetherian ring.

Consequently, through Theorem 4.9, (R U I) is Q-F ring.
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Theorem 4.11. Consider (R U I) is the Neutrosophic ring and all cyclic module
that is Neutrosophic and torsionless is the direct sum from two modules, one

projective and one injective, in that ring. Then the ring (R U I) is Q-F.

Proof: By Lemma 3.7, every Neutrosophic (R U I)-module singular is a
Neutrosophic injective, and through Lemma 3.5, we have that (RU
I)/socle (R U I) is a Neutrosophic Noetherian. By the outcome from the chatter
[33, Theorem 3.11], all that has to be shown is that each cyclic module that is
direct sum from two modules: one projective and one Neutrosophic Noetherian.
This is going to ensue if all Neutrosophic cyclic injective module is Neutrosophic
Noetherian. Assume (R U I) is a Neutrosophic injective cyclic (R U I)-module,
also assume S = socle(R U ). After that x(RuUI)/xS is cyclic (RUI)/S-
module consequently Noetherian. Should xS does not have a finite length, it will
decomposition into a direct sum @;2, X;, where the length of any X; is infinite.
Let E; be an injective hull from X; in x(R U I). As a result, E; is not semi-simple
and has an indefinite length as it is cyclic. Then x(R U I)/xS includes the infinite
direct sum @2, E;/X; , contradicting the property that x(RUI)/xS is
Noetherian. Consequently, through Theorem 4.9, (R U I) is Q-F ring.

Theorem 4.12. A Neutrosophic Noetherian ring (RUI) is referred to as

Neutrosophic Q-F iff all torsionless (R U I)-module is f-generated hollow.

Proof: Assuming that (R U I) is Neutrosophic Noetherian Q-F ring, also assume
(M uUI) be a Neutrosophic torsionless (R U I)-module. After that through
Theorem 4.9, we have a module (M U I) is cyclic. We claim, (M U I) having a
unique maximal Neutrosophic submodule, say (E UI), then (M UI) be a
Neutrosophic f-generated. Let (L U I) be a proper Neutrosophic submodule from
(Mul) with(Kul)+ (DuUl)=(MuUl),where (D UI) is the submodule of
(MuUl).Now, if (DUI)# (MuUI),then (D UI) isan proper submodule from

(M U I), and hence (D U I) is contained in a submodule that is maximal, since
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(M v I) f-generated. However, through our claim (M U I) has a submodule (E U
I) that is unique maximal, consequently (K UI) is contained in (E UI).
Therefore, (KU +(EUIl)=(EUl)=(MuUI), which is a contradiction.
Hence,(DUI) = (M U I),thus,(KUI) K (M UI).Thatis, (M uI)isahollow
module. Consequently, through Lemma 3.4, (M Ul) is f-generated hollow
module.
Conversely, assuming that (M U I) be a Neutrosophic torsionless f-generated
hollow module, then

(MUl)=RUDmI+(RUDmMyl+ -+ (RUDm,I
formjle(Mul)andi=1.2,..,nif(MUIl)# (RUIl)myI,then(RUI)myI
Is a proper submodule of (M U I), which implies that (R U I)m;I <K (M U I).
Hence,

Mul)=(RUDmyl+(RUDmzl + -+ (RUDm,I
Just keep going back to this line of reasoning untilwe get (M U I) = (RU I)m;I
for some i. Thus (M U I) is a cyclic module. And from the hypothesis (M U I) is

torsionless, consequently, by Theorem 4.9, (R U I) is a Neutrosophic Q-F ring.

Theorem 4.13. An Neutrosophic Noetherian ring (R U ) is referred to as

Neutrosophic Q-F iff all torsionless (R U I)-module is f-generated semi hollow.

Proof: Assuming that (R UI) is an Neutrosophic Noetherian Q-F ring, and
assume (M U I) is a torsionless (R U I)-module. Then by Theorem 4.9, we have
(MU ) represents Neutrosophic cyclic (R UI)-module. After that it is
Neutrosophic f-generated and consequently all proper Neutrosophic submodule

of (M U I) contained in maximal Neutrosophic submodule, but by Lemma 3.4,
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(M U I) has a Neutrosophic submodule that is unique maximal. Therefore is a
Neutrosophic semihollow module.

Conversely, assuming that (M U I) is a torsionless semihollow and a f-generated,
therefore it is local. Consequently, is a Neutrosophic hollow and we have f-

generated. Hence is a Neutrosophic cyclic and then by Theorem 4.9, (RU ) is
Q-F ring.

Theorem 4.14. Assuming that (M U I) is non-zero Neutrosophic module. Then
an Neutrosophic Noetherian ring (R U I) is referred to as a Neutrosophic Q-F iff
every Neutrosophic torsionless (R U I)-module is hollow and Rad (M U I) #
(MUI).

Proof: Assuming that a ring (R U I) is the Neutrosophic Noetherian Q-F, and
assume (M U I) be a torsionless Neutrosophic hollow module, then by Theorem
4.9, (M U 1) represents Neutrosophic cyclic module. After that (M U I) is the
Neutrosophic f-generated module. Consequently, (M U I) has a submodule that
Is maximal, which suggests that Rad (M UI) # (M U I).

Conversely, assume that (M U I) is a torsionless hollow module and Rad (M U
)= MUI), then Rad(MUIl) K (MuUl) . also through Lemma 3.4,
Rad (M U I) is the maximal submodule that is unique from (M U I) and thus
(M uUl)/Rad (M U I) represents simple module and hence cyclic. We claim that
(Mul)=((Rul)ml. Let wle(MuUl) then wl+Rad(MUI)E€
(Mul)/Rad (M U I), and therefore there is vl € (RUI) s.t. wil + Rad (M U
) =rI(ml + Rad (M UI)) = (rI)(ml) + Rad (M U I). ie., wi —
(rl)(ml) € Rad (M U I), which implies that wl — (rI)(mlI) = y for some y €
Rad (MUI). Thus wl = (r)(ml)+y € (RUI)ml+ Rad (M U ), hence
(MUul)=((RUI)ml+Rad (MUI). But Rad (MUI) <« (MUI) implies
(M U I) cyclic (R U I)-module. Consequently, through Theorem 4.9, the ring
(RUI) is Q-F.
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Theorem 4.15. Consider (M U I) be the non-zero Neutrosophic module. Then
the Neutrosophic Noetherian ring (RUI) is referred to as Q-F iff every
Neutrosophic torsionless (R U I)-module is semihollow Plus Rad(M U I) #
(MuUI.

Proof: Assuming that a ring (RUI) is Neutrosophic Noetherian Q-F, and
assuming (M U 1) is Neutrosophic torsionless semihollow module, then by
Theorem 4.9, We possess a module (M U I) is the Neutrosophic cyclic. After that
(M U I) represents f-generated (R U I)-module. Thus, (M U I) has a submodule
that is maximal, which suggests that Rad(M U ) # (M U I).

Conversely, assume (M U ) is an Neutrosophic torsionless semihollow and
Rad(MUI)# (MUI), therefore (M UI) is a local Consequently (M UI)
Neutrosophic cyclic (R U I)-module. Consequently, through Theorem 4.9, (R U

I) represents Neutrosophic Q-F ring.

Theorem 4.16. A Neutrosophic Noetherian ring (R U I) is referred to as Q-F if

all Neutrosophic torsionless (R U I)-module is simple.

Proof: Assuming that (R U I) be the Neutrosophic Noetherian ring and assume
(M U I) is an Neutrosophic torsionless simple module and ml € (M U I). Both
(RuDmland B ={cl € (MUI)|(RVUI)cl =0} are submodules from (M U
I). Because (M U I) is an Neutrosophic simple, then any of them is either 0 or
(Mul). But (RUD(MUI) #0 leads to B # (M U ). Consequently B = 0,
whence (R U I)al = (M U I) for every non-zeroml € (M U I). Therefore (M U
I) is cyclic. Consequently, through Theorem 4.9, (RUI) represents
Neutrosophic Q-F ring.

Theorem 4.17. A Neutrosophic Noetherian ring (RUI) is referred to as

Neutrosophic Q-F iff every torsionless Neutrosophic (R U I)-module is an local.
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Proof: Assuming that the Neutrosophic Noetherian ring (RU ) is Q-F, and
assume (M U I) be an Neutrosophic torsionless (R U I)-module. After that by
Theorem 4.9, we possess (M U I) is cyclic (R U I)-module also through Theorem
4,12, (M UlI) is a f-generated hollow. Hence (M U I) has a submodule that is
maximal say (E U I). Assume the proper submodule from (M U I) is (K U I), if
(K u)isnotcontainedin (KU l),then(Kul)+ (EUl)=MUI),but(MuU
I) is a hollow module, thus (EUI) = (M U ), consequently, a contradiction
arises. This suggests that each appropriate submodule of (M U I) is found in (E U
), i.e.,, (M U ) has a maximal submodule that is unique and contains all proper
submodule from (M U I). Hence (M U I) is a local module.

Conversely, assuming (M U I) is Neutrosophic torsionless local (R U I)-module
then it has the maximal submodule (E U I) that is unique by definition of local
module which contains every proper submodule from (M U I). Assuming wi €
(M uI) with wil ¢ (E Ul) afterward (R U I)wI is a submodule from (M U I).
We argue that (R U Dwl = (M U I). If not (R U I)wl is an proper submodule
from (M U I), hence (R U wI < (E U I) that means wl € (E U I) this results
in a contradiction. Thus, (M U I) is Neutrosophic cyclic module. Consequently,
by Theorem 4.9, (R U I) is Q-F ring.

Theorem 4.18. A Neutrosophic Noetherian ring (RUI) is referred to as
Neutrosophic Q-F if (M U I) is an Neutrosophic torsionless and local lifting (R U
I)-module and Rad(M U ) = (M U I).

Proof: Assuming that the Neutrosophic ring (R U I) is an Noetherian and (M U
I) is an Neutrosophic torsionless and local lifting (R U I)-module and Rad (M U
I) #= (M U I), thus, there is a unique maximal submodule (N U I) of (M U I) and
each submodule from (N U I). Here exists submodules (E U I) and (F U I) from
(NUI) where  MUD) =(EUl)@ (FuUl) and (NUD N (FUI) is small
submodule of (FuUlI). After that (MuUl) =M UI) @ {0}, where {0} is

127



submoduleof (NUI),(NU)N(MUI)=(NuUl)andsince (M uUl)isalocal
lifting module. Then (NUD) N (M UIl) =(NUI) is small submodule from
(MuUlI). Thus (M UlI) is an Neutrosophic hollow module. Hence through
Theorem 4.14, (R U I) is Q-F ring.

Theorem 4.19. Let (M U I) represents the Neutrosophic torsionless (R U I)-
module. Then a Neutrosophic Notherian ring (RUI) is referred to as
Neutrosophic Q-F if Rad (M U I) is small and maximal Neutrosophic submodule
in(Mul).

Proof: Assuming that the Neutrosophic ring (R U I) is an Noetherian also assume
(M v I) is an Neutrosophic torsionless (R U I)-module. Suppose that Rad(M U
1) is a small and maximal submodule in (M U I). First we want to demonstrate
that Rad (M U I) is a maximal submodule in (M U I) that is unique. suppose
(D U I) is another submodule in (M U I) that is maximal, then (M UI) = (D U
)+ Rad (MUI), but Rad (M UI) «< (M U I) which implies that (DU I) =
(M v I), which is a contradiction. Thus Rad (M U I) is a maximal submodule in
(M U I) that is unique. We assert ownership of all proper submodule from (M U
1) foundinin Rad (M U I). Assuming (E U I) represents proper submodule from
(MuUl),soif (E UlI)isnotcontainedin Rad (M U I),then(E UIl)+ Rad (M U
[)=(MUl).But Rad (MU I) < (M uUI) which implies that (FEUIl) = (M U
I) then we get contradiction. Consequently a module (M U I) is Neutrosophic

local. Thus, through Theorem 4.17, (R U I) represents Neutrosophic Q-F ring.

Theorem 4.20. A Neutrosophic Noetherian ring (RUI) is referred to as
Neutrosophic Q-F iff every non-zero torsionless factor module of (M UI) in
decomposable.

Proof: Assuming that the ring (R U I) is Neutrosophic Noetherian Q-F, also
assume (M U I) be a non-zero Neutrosophic torsionless factor module. Then
through Theorem 4.9, We possess (M U I) is Neutrosophic cyclic (R U I)-
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module. Assume (M UI)/(D U ) # 0 is a factor module from (M U I). Given
the Lemma 3.4 and Lemma 3.8, we possess (M U I) is a module for lifting
locally. So (M U I)/(D U I) represents module to lifting locally through Lemma
3.9. Thus through Lemma 3.10, we obtain (M U I)/(D U I') be an decomposable.
Conversely, Assume (D U I) is maximal submodule from (M U I) and assume
(L U I) isanon-zero submodule from (D U I). supposethat (M U ) = (LU ) +
(K U ), where (K UI) is submodule from (M U I) through [34, lemma 1.2.10],
we acquire MU D) /(LUDN(KUD=MUDh/(LUV)@ MUID)/(KUI).
But(Mul)/(LUIl)n (K UI)isindecomposable then by second isomorphism
theorem. Ether (MU T)/(EUl)=00or(MUl)/(KUl)=0.Since (LUI) is
submodule of (D U ), and (D U I) is submodule from (M U I). Then (LU I)
represents proper submodule from (M U I). Hence (M U I)/(L U I) # 0 implies
that (MU I)/(KUIl)=0and hence (MUI)= (KUI). Therefore (LUI)isa
small submodule from (M U I). Thus (M U I) is a Neutrosophic local lifting
module and through Lemma 3.11, (M U I) is cyclic. Thus by Theorem 4.9, ring
(R U I) is Neutrosophic Q-F.
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5. Conclusion
In this research article, we studied the relation between torsionless cyclic R-

module and quasi-Frobenius rings. Also we studied some relationships through
which we obtained the cyclic R-module thus we obtained the Q-F ring. In addition
we studied an relation between isomorphic through we obtain the Noetherian ring
and thus we obtained an Q-F ring. Additionally, we studied an relation between
torsionless cyclic module and projective and injective module which through we
garnered the quasi-Frobenius ring. Finally, we discussed some concepts such as:
the singw, local and simple module and Its relationship to the quasi-Frobenius

rings.
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