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Abstract 

Within this research, we will study the relationships between Neutrosophic 

torsionless cyclic (𝑅 ∪ 𝐼)-module and Neutrosophic quasi-Frobenius rings. Some 

implications yeld cyclic (𝑅 ∪ 𝐼)-module and hence Neutrosophic quasi-

Frobenius ring have been presented. In addition we study the relations between 

isomorphic Neutrosophic Noetherian ring and Neutrosophic quasi-Frobenius (Q-

F) ring. Additionally, we present an important relation between Neutrosophic 

torsionless cyclic module, projective module and Neutrosophic injective module 

which through we get an Q-F ring. Finally, we study some concepts such as; 

Neutrosophic hollow module, Neutrosophic local module and Neutrosophic 

simple module which its relationship to the quasi-Frobenius rings. 

Keywords: Quasi-Frobenius rings, Noetherian rings, torsionless, cyclic module, Hollo 

Module. 

 

 

 المستخلص

 الالتواء من الخالية الدورية النيوتروسوفية المقاسات بين العلاقات ندرس البحث، هذا في

(Neutrosophic torsionless cyclic module )شبه فروبينيوس النيوتروسوفية والحلقات 

(Neutrosophic quasi-Frobenius rings .)تكوّن إلى تؤدي التي النتائج بعض تقديم تم وقد 

 العلاقات ندرس ذلك، إلى بالإضافة .شبه فروبينيوس نيوتروسوفية حلقة إلى ثم ومن دورية، مقاسات
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 isomorphic Neutrosophic Noetherian) النويثيرية المتماثلة النيوتروسوفية الحلقة بين

ring)، شبه فروبينيوس النيوتروسوفية والحلقة (Q-F ring .)المقاسات بين مهمّة علاقة نعرض كما 

 Neutrosophic) الإسقاطية النيوتروسوفية والمقاسات الالتواء، من الخالية الدورية النيوتروسوفية

projective module)، الحقنية النيوتروسوفية والمقاسات (Neutrosophic injective 

module)، حلقة على الحصول يمكن خلالها من والتي Q-F. ،مثل المفاهيم بعض ندرس وأخيرًا :

 النيوتروسوفية والمقاسات ،(Neutrosophic hollow module) الجوفاء النيوتروسوفية المقاسات

 Neutrosophic simple) البسيطة النيوتروسوفية والمقاسات ،(Neutrosophic local module) المحلية

module)، فروبينيوس شبه بحلقات وعلاقتها. 

 

1. Introduction 

A Neutrosophic Artinian ring is a Neutrosophic ring that satisfies the 

descending chain condition on (one-sided) ideals; that is, there is no infinite 

descending sequence of ideals. A Neutrosophic ring 𝑅 ∪ 𝐼 is referred to as quasi-

Frobenius if it is (left or right) self-injective and (left or right) Artinian, 

equivalently, on which side it is self-injective and which side it is Noetherian. A 

right n-injective ring 𝑅 is defined as one in which each homomorphism of an n-

generated right ideal to 𝑅 extends into an endomorphism of 𝑅. This definition is 

one of several generalizations of the notion of self-injective rings. [1]. The 

concept of rings that are Frobenius and quasi-Frobenius are generalized by many 

authors. In (1941), Nakayama, Tadasi presented a study on Frobeniusian algebra 

[2]. In (1950), Ikeda, Masatoshi and Tadasi Nakayama submitted a study about 

supplementary remarks on Frobeniusian algebras [3]. In (1956), the outher 

studied both Hiroyuki Tachikawa, Kiiti Morita, and Morita Quasi Frobenius 

rings, character modules, and free module submodules [4]. In (1958), Dieudonne', 

Jean provided some remarks about quasi-Frobenius rings [5]. In (1964), E. A. 

Walker and Carl Faith proposed the concept about quasi-Frobenius rings on 

characterizations [6]. And in (1996), Dinh van huynh demonstrated in her study 

A Note on quasi- Frobenius rings [7]. Sets of fuzzy and Sets of intuitionistic fuzzy  

have a generalization which is the Neurosophic set. According to Neutrosophic 
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reasoning, There are three levels to a proposition: truth (𝑇), indeterminacy (𝐼), 

and falsehood (𝐹). There is a membership function for each component level of 

involvement in the uncertainty issue, according to fuzzy set theory [8]. After that, 

in 1983, K. Atanassov expanded fuzzy sets to include intuitionistic fuzzy sets on 

universe 𝑋. In these sets, in addition to Membership degree μA(𝑥0) ϵ [0,1] for 

any element 𝑥0 to set A, non-members may also get a degree to function 

νA(𝑥0) ϵ [0,1] that are present, where 𝑥0 ϵ X, μA(𝑥0)  + νA(𝑥0)  ≤  1 [9].  

 

2. Basic Concepts 

In the present section, some fundamental terms that will be used later on are 

defined. 

Definition 2.1 [10]. Consider 𝑋 as an universal set. Then a fuzzy set 𝐴 within 𝑋 

consists of ordered pairs; 𝐴 ∶=  {(𝑥, 𝜇𝐴(𝑥)) ∶  𝑥 ∈  𝑋 } s.t,  𝜇𝐴 ∶ 𝑋 ⟶ [0, 1], that 

is known as the function for membership with 𝑥 ∈ 𝑋, the value from 𝜇𝐴(x) 

represents the grade of membership of 𝑥 in 𝐴. 

Example 2.2: The universal set X is the group of people. The issue of whether 

person x is young is addressed to that extent by the definition of B fuzzy subset 

young? To each person in the universal set, We must allocate a degree for 

membership inside the fuzzy subset "young." The most straightforward method 

to do this is using the function of membership based on the individual's age. 

𝜇𝐵(𝑥) = {

 1 ,                                                      𝑎𝑔𝑒(𝑥) ≤ 20

(30 − 𝑎𝑔𝑒(𝑥)) 10⁄  ,          20 ≤ 𝑎𝑔𝑒(𝑥) ≤ 30
 0 ,                                                      𝑎𝑔𝑒(𝑥) > 30

 

 

Definition 2.3 [11]. Assume that 𝐺 is any group. Then this mapping 𝜇: 𝐺 → [0 1] 

forms the fuzzy group if  ∀ 𝑎 , 𝑏 ∈ 𝐺: 
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1) 𝜇( 𝑎𝑏 ) ≥ 𝑚𝑖𝑛  { 𝜇 (𝑎), 𝜇(𝑏)}. 

2) μ( 𝑎−1 ) =  𝜇 (𝑎). 

Example 2.4: Here we have the set 𝑆, which contains all possible random 

variables for the space of probabilities (𝛺, 𝜑, 𝑃) and suppose that A is any subset 

of the reals that is Borel and includes all subgroups from the reals that are 

addizable. Note that S is a groupoid when added pointwise. (The extra structure 

is not necessary for our current goals, even if S is a group.) A function 𝜑𝐴: 𝑆 ⟶

[0, 1] define by 𝜑𝐴(𝑋) = 𝑃{𝑤 ∈ 𝛺 ∶  𝑋(𝑤) ∈ 𝐴} = 𝑃[𝑋−1(𝐴)]. Therefore, 𝜑𝐴 

represents the probabilities that  𝑋 is “in” the subgroup A. A fuzzy subgroupoid 

is an obvious choice for the function 𝜑𝐴. 

Definition 2.5 [12]. Assume that 𝑅 is a ring, A is a fuzzy set of 𝑅, we will refer 

to 𝐴 as a fuzzy ring of 𝑅, if  

1) 𝐴(𝑎 − 𝑏) ≥ 𝐴(𝑎) ∧ 𝐴(𝑏), ∀ 𝑎, 𝑏 ∈ 𝑅. 

2) 𝐴(𝑎𝑏) ≥ 𝐴(𝑎) ∧ 𝐴(𝑏), ∀ 𝑎, 𝑏 ∈ 𝑅. 

Example 2.6: Consider the set 𝑅 = {0, 𝑥, 𝑦} , which contains a binary operation 

(·) and a hyperoperation (+) as follows:  

 

 

 

 

 

Consequently a ring (𝑅, +,·) is a hypernear. A fuzzy set μ ∶ 𝑅 ⟶ [0, 1] define by 

μ(𝑥) = μ(𝑦) = 0.5 and μ(0) = 1. Checking that μ is a fuzzy subhypernear ring 

from 𝑅 may be done using basic computations. 

+   0               𝑥                  𝑦 

0 

𝑥 

𝑦 

{0}            {𝑥}               {𝑦} 

{𝑥}         {0, 𝑥, 𝑦}         {𝑥, 𝑦} 

{𝑦}          {𝑥, 𝑦}          {0, 𝑥, 𝑦} 

∙ 0              𝑥                 𝑦 

0 

𝑥 

𝑦 

0              0                 0 

0              𝑥                 𝑦 

0              𝑥                 𝑦 
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Definition 2.7 [13]. Assume that 𝑅 is a ring. We referre to the fuzzy subset 𝜆 of 

R fuzzy  ideal  in 𝑅 if ∀ 𝑥, 𝑦 ∈ 𝑅, 

1) 𝜆 (𝑥 − 𝑦) ≥  𝑚𝑖𝑛  { 𝜆(𝑥) , 𝜆(𝑦)}. 

2) 𝜆 (𝑥𝑦) ≥  𝑚𝑎𝑥  { 𝜆(𝑥) , 𝜆(𝑦)}. 

Example 2.8: Consider 𝑅 is a ring. A fuzzy subset λ define  by: 𝜆(𝑥) = 𝑟, ∀ 𝑥 ∈

𝑅 and 𝑟 ∈ [0,1], then 𝜆 is fuzzy ideal in 𝑅. 

Note: If we replace [0, 1] with {0, 1} in the above definition, then a fuzzy ideal is 

just the usual real ideal. 

Definition 2.9 [14]. Assume that a fixed set 𝐴 is non-empty. The Neutrosophic 

set 𝑆 Object having the format: 𝑆 = {〈𝐴, 𝜇𝑆(𝑎), 𝜎𝑆(𝑎), 𝛾𝑆(𝑎)〉 ∶ 𝑎 ∈ 𝐴} where 

𝜇𝑆(𝑎), 𝜎𝑆(𝑎) and γ𝑆(𝑎) are represent a membership function's degree namely 

𝜇𝑆(𝑎), 𝜎𝑆(𝑎) represents the degree of indeterminacy while γS(a) represents an 

degree from non-membership for any 𝑎 ∈ 𝐴 of 𝑆. 

Example 2.10: Assuming the universe from discourse 𝑈 = {𝑥1, 𝑥2, 𝑥3}, where 𝑥1 

describes the capacity, 𝑥2 describes the reliability and  𝑥3 represents the item 

prices Another such assumption is that that values of  𝑥1, 𝑥2 and 𝑥3 located in 

[0,1] These are derived from surveys completed by professionals. Professionals 

have the option to enforce their views in three areas: the degree to which things' 

qualities may be explained by their goodness, indeterminacy, or poverty. Assume 

that 𝐴 is a set of Neutrosophic  (NS) on 𝑈, where, 𝐴 = {< 𝑥1 , (0.3, 0.5 ,0.6) >

, < 𝑥2 , (0.3, 0.2 ,0.3) >, < 𝑥3 , (0.3, 0.5 ,0.6) >}, such that 0.3 is the degree for 

capacity goodness, degree for capability indeterminacy is 0.5 and 0.6  is the 

degree of capacity falsehood, etc. 

Definition 2.11 [15]. Assume any ring as 𝑅. Another ring that may be generated 

underneath the operations of R by 𝑅 and 𝐼 is the Neutrosophic ring (𝑅 ∪ 𝐼). 
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Example 2.12: Assume that 𝑍 be any ring of integers; (𝑍 ∪ 𝐼) = {𝑧1 + 𝑧2𝐼 ∶

𝑧1 , 𝑧2 ∈ 𝑍}.  An integer ring referred as the Neutrosophic ring is (𝑍 ∪ 𝐼). Also 

𝑍 ⊆ (𝑍 ∪ 𝐼). 

 

Definition 2.13 [16]. Let μ = (μ𝐿 , μ𝐽 , μ𝐸) be any non-empty Neutrosophic 

subset of a 𝛽-semiring 𝐴 (i.e. anyone of μ𝐿 (𝑎), μ𝐽 (𝑎) 𝑜𝑟 μ𝐸  (𝑎) ≠ 0; 𝑎 ∈ 𝐴). 

Then μ referred to as a Neutrosophic left ideal of 𝐴, ∀ 𝑎, 𝑏 ∈ 𝐴 𝑎𝑛𝑑 𝜓 ∈ 𝛽 if: 

i. μ𝐿 (𝑎 +  𝑏)  ≥  𝑚𝑖𝑛{μ𝐿 (𝑎), μ𝐿 (𝑏)}, μ𝐿 (𝑎 𝜓 𝑏)  ≥  μ𝐿 (𝑏) 

ii. μ𝐽 (𝑎 +  𝑏)  ≥  
µ𝐽 (𝑎)+µ𝐽 (𝑏) 

2
 , μ𝐽 (𝑎 𝜓 𝑏)  ≥  μ𝐽(𝑏) 

iii. μ𝐸  (𝑎 +  𝑏)  ≤  𝑚𝑎𝑥{μ𝐸  (𝑎), μ𝐸  (𝑏)}, μ𝐸  (𝑎 𝜓 𝑏)  ≤  μ𝐸  (𝑏). 

In the same way, the Neutrosophic right ideal of A may be defined. 

Example 2.14: A and 𝛾 are the semigroups of all not positive integers and all not 

positive even integers respectively that are additive and commutative. After that 

A is a 𝛽 -semiring if 𝑎 𝜓  𝑏 represents the represents multiplication from integers 

𝑎1 , 𝜓 , 𝑎2 where 𝑎1, 𝑎2 ∈ 𝐴 and 𝜓 ∈ 𝛽. Define a Neutrosophic subset μ of 𝐴 as 

follows 

μ(𝑤) = { 

 (1, 0, 0) 𝑖𝑓 𝑤 =  0               
 (0.8, 0.3, 0.4) 𝑖𝑓 𝑤 𝑖𝑠 𝑒𝑣𝑒𝑛
(0.3, .02, 0.7) 𝑖𝑓 𝑤 𝑖𝑠 𝑜𝑑𝑑

 

Then μ of 𝐴 is an ideal that is Neutrosophic. 

 

Definition 2.15 [17]. Remember that in order for a ring 𝐴 to be considered 

Noetherian, it must meet the following three comparable requirements: 

(1) maximum elements (the maximum condition) exist in all nonempty sets from 

ideals of 𝐴. 

(2) Every ascending sequences of ideals are stationary (the ascending chain 

condition (A.C.C.)) 
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(3) Every ideal of 𝐴 is f-generated. 

 

Definition 2.16 [18]. An 𝑅-module is considered free if it is isomorphic to 

another 𝑅-module of the type ⨁𝑖∈𝐼𝑀𝑖, where each 𝑀𝑖 ≅ 𝑅 (in the sense that it is 

an R-module). The notation for such a module is 𝑅(𝐼). 

Definition 2.17 [6]. Let 𝑅 be a ring, 𝑀  be R-module and defined 𝜎𝑀: 𝑀 → 𝑀∗∗ 

as: [𝜎𝑀(𝑚0)](𝑓) =  𝑓(𝑚0), 𝑓 ∈ 𝑀∗,  𝑚0 ∈ 𝑀. Then 𝑀 is torsionless iff 𝜎𝑀 is a 

𝑅-monomorphism. 

 

Definition 2.18 [19]. Assuming that 𝑀 be an R-module also let 𝑚𝑖 ∈ 𝑀, ∀ 𝑖 ∈ 𝐼, 

s.t. 𝐼 represents some indexing set. Now if 𝑀 =  ∑ 𝐴𝑚𝑖𝑖∈𝐼 , then {𝑚𝑖|𝑖 ∈  𝐼} is 

referred to as the set generators of 𝑀. 

Definition 2.19 [19]. For 𝑅-modules 𝑀 with an finite number from generators, 

so we say to be it is finitely generated. 

Definition 2.20 [20]. If 𝑍(𝑀) = 𝑀, such that 𝑍(𝑀) = { 𝑚 ∈ 𝑀 ∶  𝑚𝐼 = (0), for 

some essential ideal 𝐼 of 𝑅}. Then 𝑅-module 𝑀 is said to be singular.  

Definition 2.21 [21]. If for every homomorphisms 𝑅-module 𝜙: 𝑁 ⟶ 𝑊 and 

𝜓: 𝑁 ⟶ 𝑀 where 𝜙 is injective, there exists an 𝑅-linear homomorphism  

𝛺: 𝑊 ⟶ 𝑀 such that 𝛺 ∘ 𝜙 =  𝜓. Then R-module 𝑀 is said to be injective. 

Definition 2.22 [22]. Let 𝑀 ⊕ 𝐾 is the free 𝑅-module s.t. 𝐾 is each module on 

𝑅. After that an 𝑅-module 𝑀 is said to be projective. 

Definition 2.23 [23]. All proper submodules of the non-zero 𝑅-module 𝑀 must 

be small submodules of 𝑀 for 𝑀 to be a hollow module. 
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Definition 2.24 [24]. The R-module 𝑀 that is non-trivial is referred to as semi 

hollow if all proper submodule from 𝑀 is a semi small submodule from 𝑀. 

Definition 2.25 [18]. An 𝑅-module 𝑀 is referred to as local lifting if a module 𝑀 

have the maximal submodule 𝑁 that is unique. There are a submodules 𝐴 and 𝐵 

of N where 𝑀 = 𝐴 ⊕ 𝐵  and 𝑁 ∩ 𝐵 is small submodule of 𝐵.  

3. Auxiliary results 

We begin with the following lemmas which needs its in the our main results. 

Lemma 3.1. [25]. Consider a ring 𝑅 is Noetherian. Hence, the following criteria 

are equivalent:  

1) 𝑅 is an Q-F ring. 

2) All 𝑅-module is submodule from free 𝑅-module. 

3) All 𝑅-module is torsionless. 

4) All f-generated 𝑅-module is torsionless. 

5) All f-generated 𝑅-module represents submodule of an free 𝑅-module. 

Lemma 3.2. [26]. Assume that C is an cyclic 𝑅-module. We say C = 𝑅/ 𝐴 such 

that 𝐴 is an ideal in 𝑅. 

1) C∗ ≅ 𝑎𝑛𝑛 (𝐴) as an 𝑅-modules. 

2) C is torsionless if and only if 𝐴 is annihilator. 

3) C is reflexive if and only if 𝐴 is annihilator and all 𝑅-homomorphism 

𝑎𝑛𝑛(𝐴) ⟶ 𝑅 yields the result of multiplying by an element of 𝑅. 

Lemma 3.3. [27]. The ring 𝑅 is said to be Q-F iff it is a ring that is Noetherian in 

addition to relationships 𝑠(𝑑(𝐼)) = 𝐼 and 𝑑(𝑠(𝐽)) = 𝐽 are applicable for all ideals 

𝐽 and  𝐼 from 𝑅. 
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Lemma 3.4. [28]. Assume that M is a module. Then a module M is considered an 

f-generated hollow module iff it is has a unique maximum submodule and is 

cyclic. 

Lemma 3.5. [29]. The Noetherian state of 𝑅/𝑠𝑜𝑐𝑙𝑒(𝑅) and the injectivity from 

every simple 𝑅/𝑠𝑜𝑐𝑙𝑒(𝑅)-modules follow based on the reality that every cyclic 

singular 𝑅-modules are injective. 

Lemma 3.6. [30]. 

Consider the ring 𝑅 where each cyclic is injective. In such case, 𝑅 is an Artinian 

semi simple. 

Lemma 3.7. [31].  These two options are analogous: 

1) All cyclic modules in a ring 𝑅 are extensions from injective modules in a 

projective module. 

2) It is true that all singular module certainly injective. 

Lemma 3.8. [18]. Assume that the module 𝑀 is an f-generated. Then 𝑀 is local 

lifting iff 𝑀 has a unique maximum submodule and is cyclic. 

Lemma 3.9. [18]. Assume that 𝑀 is an 𝑅-module. 𝑀 𝑁⁄  is local lifting module if 

𝑀 is local lifting module for all 𝑁 proper submodule of 𝑀. 

Lemma 3.10. [18]. Every a local lifting module is indecomposable module. 

Lemma 3.11. [18]. Assume that 𝑀 is 𝑅-module. A module 𝑀 is local lifting iff 

𝑀 is a lifting and cyclic module. 

4. Main Results 

In this part, we present some different rings and modules and their relationship 

with the Neutrosophic Quasi-Frobenius Ring. 
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Definition 4.1. A Neutrosophic ring (𝑅 ∪ 𝐼) is referred to as Neutrosophic self-

injective ring if (𝑅 ∪ 𝐼) represents injective as the Neutrosophic module on itself 

(i.e., (𝑅 ∪ 𝐼) is Neutrosophic injective as a left or right (𝑅 ∪ 𝐼)-module).  

Example 4.2: Let (𝑅 ∪ 𝐼) = (𝑍 ∪ 𝐼) 𝑛(𝑍 ∪ 𝐼)⁄  for any integer 𝑛 ≥ 1. Then (𝑅 ∪

𝐼) is a Neutrosophic self-injective. Because (𝑍 ∪ 𝐼) 𝑛(𝑍 ∪ 𝐼)⁄   is a finite 

Neutrosophic ring, hence Neutrosophic Artinian, and it is Neutrosophic quasi-

Frobenius ring implies that it is Neutrosophic self-injective. In addition, as a 

Neutrosophic module over itself, every homomorphism from as Neutrosophic 

ideal into (𝑅 ∪ 𝐼) extends to all of (𝑅 ∪ 𝐼). Thus, (𝑍 ∪ 𝐼) 𝑛(𝑍 ∪ 𝐼)⁄  is a 

Neutrosophic  self-injective ring. 

Definition 4.3. A Neutrosophic ring (𝑅 ∪ 𝐼) is said to be Neutrosophic Artinian 

if (𝑅 ∪ 𝐼) satisfies the descending chain condition (D.C.C): all descending chain 

from Neutrosophic ideals of (𝑅 ∪ 𝐼), (𝐾0 ∪ 𝐼) ⊇ (𝐾1 ∪ 𝐼) ⊇ · · · ⊇ (𝐾𝑛 ∪ 𝐼) ⊇

(𝐾𝑛+1 ∪ 𝐼) ⊇ · · · is stationary. 

Example 4.4: Assume (𝐾(𝑡) ∪ 𝐼) is the Neutrosophic polynomial ring in the 

variable 𝑡 accompanied with coefficients in a Neutrosophic field K. Then for each 

positive integer 𝑛, the residue ring consisting of (𝐾(𝑡) ∪ 𝐼)/(𝑡𝑛) is both 

Neutrosophic Artinian and Noetherian. Reason being, a vector space (𝐾(𝑡) ∪

𝐼)/(𝑡𝑛) is finite and has 𝑛 dimensions. 

 

Definition 4.5. Any Neutrosophic ring that does not have an infinite escalating 

chain from right (or left) Neutrosophic ideals is referred to as left (or right) 

Neutrosophic Noetherian. 

In this particular instance from above definition we say that the ring satisfy the 

(A.C.C) on the left (or right) Neutrosophic ideals. 
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Note: A Neutrosophic ring (𝑅 ∪ 𝐼) is called Neutrosophic Noetherian if it is 

Neutrosophic Noetherian both left and right. 

Example 4.6: Consider the Neutrosophic  ring from integers (Z ∪ 𝐼). Look at an 

Neutrosophic ideal in (Z ∪ 𝐼) of the form (𝐾 ∪ 𝐼) = (6𝐼) = { 6𝑛𝐼 | 𝑛𝐼 ∈ (𝑍 ∪

𝐼)} are f-generated by the single element 6𝐼. In fact, every Neutrosophic ideal in 

(𝑍 ∪ 𝐼) is generated by one integer. Therefore, all Neutrosophic ideals are f-

generated. Hence (Z ∪ 𝐼) is an Neutrosophic Noetherian ring. 

Definition 4.7. If (𝑅 ∪ 𝐼) is a Neutrosophic self-injective and Neutrosophic 

Artinian ring, or if it is Neutrosophic self-injective and Neutrosophic Noetherian 

ring, then it can be called Neutrosophic Q-F ring. 

Example 4.8: Where 𝑚 is any positive integer and (𝑅 ∪ 𝐼) represents an 

Neutrosophic integers ring. After that, an Neutrosophic quotient integers ring 

modulo 𝑚 is Neutrosophic Q-F ring because (𝑅 ∪ 𝐼) is an Neutrosophic 

commutative, finite and primary ideal. 

Theorem 4.9. An Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as Q-F iff 

all cyclic (𝑅 ∪ 𝐼)-module is torsionless. 

Proof: Assuming that (𝑅 ∪ 𝐼)  is Neutrosophic Q-F, we know from [32, Exercise 

15.7] also Lemma 3.1, all Neutrosophic (𝑅 ∪ 𝐼)-module is torsionless. 

Conversely, assuming all Neutrosophic cyclic (𝑅 ∪ 𝐼)-module is torsionless. 

Through  Lemma 3.2, we have each Neutrosophic ideal from (𝑅 ∪ 𝐼) is 

annihilator. Considering (𝑅 ∪ 𝐼) is Neutrosophic Noetherian, (𝑅 ∪ 𝐼) is 

Neutrosophic Q-F from Lemma 3.3. 
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Theorem 4.10. All torsionless cyclic Neutrosophic (𝑅 ∪ 𝐼)-modules that not 

isomorphic into 𝑅 and are injective are defined for a Neutrosophic ring (𝑅 ∪ 𝐼). 

After that (𝑅 ∪ 𝐼) is Q-F ring. 

Proof: Assuming (𝑅 ∪ 𝐼) is the Neutrosophic ring  also assume that (𝑀 ∪ 𝐼) is 

Neutrosophic torsionless cyclic module and it is not isomorphic into (𝑅 ∪ 𝐼) is 

injective. Then Lemma 3.5, refer to (𝑅 ∪ 𝐼)/socle(𝑅 ∪ 𝐼) is a Neutrosophic 

Noetherian. If 𝑠𝑜𝑐𝑙𝑒(𝑅 ∪ 𝐼)  ≠  0, after that (𝑅 ∪ 𝐼)/socle(𝑅 ∪ 𝐼) is a 

Neutrosophic semi simple Artinian by Lemma 3.6, because all quotient of that is 

annihilated through socle(𝑅 ∪ 𝐼), and (𝑅 ∪ 𝐼) is not. Assume (𝑅 ∪ 𝐼) ≠

socle(𝑅 ∪ 𝐼). Let 𝑦𝐼 ∈ (𝑅 ∪ 𝐼), 𝑦𝐼(𝑅 ∪ 𝐼) /𝑠𝑜𝑐𝑙𝑒( 𝑦𝐼(𝑅 ∪ 𝐼) ) simple. If 

𝑠𝑜𝑐𝑙𝑒( 𝑦𝐼(𝑅 ∪ 𝐼) ) is length that is not finite, afterward  

𝑠𝑜𝑐𝑙𝑒( 𝑦𝐼(𝑅 ∪ 𝐼) )  =  𝑆 ⊕ 𝑇 ⊕ 𝑈, 

where the lengths of 𝑆, 𝑇 and 𝑈 are infinite. Because for 𝑦𝐼(𝑅 ∪ 𝐼) then S is not 

direct summand, 𝑦𝐼(𝑅 ∪ 𝐼) /𝑆 is not projective. Hence 𝑦𝐼(𝑅 ∪ 𝐼) /𝑆 is injective. 

Then 𝑇 ⊕ 𝑈 embeds in 𝑦𝐼(𝑅 ∪ 𝐼) /𝑆, and 𝑦𝐼(𝑅 ∪ 𝐼) 𝐽𝑆 =  𝐸( 𝑇) ⊕ 𝐸( 𝑈) ⊕ 𝐾 

Regarding a few injective hulls related to 𝑈 and 𝑇. Then 𝑦𝐼(𝑅 ∪ 𝐼) /(𝑆 ⊕ 𝑇 ⊕

𝑈)  ≈  𝐸( 𝑇)/𝑇 ⊕ 𝐸( 𝑈)/𝑈 ⊕ 𝐾 It's not simple, an incongruity. Consequently 

the socle from 𝑦𝐼(𝑅 ∪ 𝐼)  has the length a finite. Since any simple submodule 

from (𝑅 ∪ 𝐼)  is injective, the socle from 𝑦𝐼(𝑅 ∪ 𝐼) is direct summand from 

𝑦𝐼(𝑅 ∪ 𝐼) also 𝑦𝐼 ⊂ 𝑠𝑜𝑐𝑙𝑒(𝑅 ∪ 𝐼). Consequently (𝑅 ∪ 𝐼) = 𝑠𝑜𝑐𝑙𝑒(𝑅 ∪ 𝐼) is 

semi simple Artinian. Hence (𝑅 ∪ 𝐼)  is Neutrosophic Noetherian ring. 

Consequently, through Theorem 4.9, (𝑅 ∪ 𝐼) is Q-F ring. 
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Theorem 4.11. Consider (𝑅 ∪ 𝐼) is the Neutrosophic ring and all cyclic module 

that is Neutrosophic and torsionless is the direct sum from two modules, one 

projective and one injective, in that ring. Then the ring (𝑅 ∪ 𝐼) is Q-F. 

Proof: By Lemma 3.7, every Neutrosophic (𝑅 ∪ 𝐼)-module singular is a 

Neutrosophic injective, and through Lemma 3.5, we have that (𝑅 ∪

𝐼)/𝑠𝑜𝑐𝑙𝑒 (𝑅 ∪ 𝐼) is a Neutrosophic Noetherian. By the outcome from the chatter 

[33, Theorem 3.11], all that has to be shown is that each cyclic module that is 

direct sum from two modules: one projective and one Neutrosophic Noetherian. 

This is going to ensue if all Neutrosophic cyclic injective module is Neutrosophic 

Noetherian. Assume (𝑅 ∪ 𝐼) is a Neutrosophic injective cyclic (𝑅 ∪ 𝐼)-module, 

also assume 𝑆 = 𝑠𝑜𝑐𝑙𝑒(𝑅 ∪ 𝐼). After that 𝑥(𝑅 ∪ 𝐼)/𝑥𝑆 is cyclic (𝑅 ∪ 𝐼)/𝑆-

module consequently Noetherian. Should 𝑥𝑆 does not have a finite length, it will 

decomposition into a direct sum ⊕𝑖=0
∞ 𝑋𝑖, where the length of any 𝑋𝑖 is infinite. 

Let 𝐸𝑖 be an injective hull from 𝑋𝑖 in x(𝑅 ∪ 𝐼). As a result, 𝐸𝑖 is not semi-simple 

and has an indefinite length as it is cyclic. Then 𝑥(𝑅 ∪ 𝐼)/𝑥𝑆 includes the infinite 

direct sum ⊕𝑖=0
∞ 𝐸𝑖 𝑋𝑖⁄  , contradicting the property that 𝑥(𝑅 ∪ 𝐼)/𝑥𝑆 is 

Noetherian. Consequently, through Theorem 4.9, (𝑅 ∪ 𝐼) is Q-F ring. 

Theorem 4.12. A Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as 

Neutrosophic Q-F iff all torsionless (𝑅 ∪ 𝐼)-module is f-generated hollow. 

Proof: Assuming that (𝑅 ∪ 𝐼) is Neutrosophic Noetherian Q-F ring, also assume 

(𝑀 ∪ 𝐼) be a Neutrosophic torsionless (𝑅 ∪ 𝐼)-module. After that through 

Theorem 4.9, we have a module (𝑀 ∪ 𝐼) is cyclic. We claim, (𝑀 ∪ 𝐼)  having a 

unique maximal Neutrosophic submodule, say (𝐸 ∪ 𝐼), then (𝑀 ∪ 𝐼) be a 

Neutrosophic f-generated. Let (𝐿 ∪ 𝐼) be a proper Neutrosophic submodule from 

(𝑀 ∪ 𝐼)  with (𝐾 ∪ 𝐼) + (𝐷 ∪ 𝐼) = (𝑀 ∪ 𝐼), where (𝐷 ∪ 𝐼) is the submodule of 

(𝑀 ∪ 𝐼). Now, if (𝐷 ∪ 𝐼) ≠ ( 𝑀 ∪ 𝐼), then (𝐷 ∪ 𝐼) is an proper submodule from 

(𝑀 ∪ 𝐼), and hence (𝐷 ∪ 𝐼) is contained in a submodule that is maximal, since  
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(𝑀 ∪ 𝐼) f-generated. However, through our claim (𝑀 ∪ 𝐼) has a submodule (𝐸 ∪

𝐼) that is unique maximal, consequently (𝐾 ∪ 𝐼) is contained in (𝐸 ∪ 𝐼). 

Therefore, (𝐾 ∪ 𝐼) + (𝐸 ∪ 𝐼) = (𝐸 ∪ 𝐼) = (𝑀 ∪ 𝐼), which is a contradiction. 

Hence, (𝐷 ∪ 𝐼) = (𝑀 ∪ 𝐼), thus, (𝐾 ∪ 𝐼) ≪ (𝑀 ∪ 𝐼). That is, (𝑀 ∪ 𝐼) is a hollow 

module. Consequently, through Lemma 3.4, (𝑀 ∪ 𝐼) is f-generated hollow 

module.  

Conversely, assuming that (𝑀 ∪ 𝐼) be a Neutrosophic torsionless f-generated 

hollow module, then 

(𝑀 ∪ 𝐼) = (𝑅 ∪ 𝐼)𝑚1𝐼 + (𝑅 ∪ 𝐼)𝑚2𝐼 + ⋯ + (𝑅 ∪ 𝐼)𝑚𝑛𝐼 

for 𝑚𝑖𝐼 ∈ (𝑀 ∪ 𝐼) and 𝑖 = 1,2, … , 𝑛 if (𝑀 ∪ 𝐼) ≠ (𝑅 ∪ 𝐼)𝑚1𝐼 , then (𝑅 ∪ 𝐼)𝑚1𝐼 

is a proper submodule of (𝑀 ∪ 𝐼), which implies that (𝑅 ∪ 𝐼)𝑚1𝐼 ≪ (𝑀 ∪ 𝐼). 

Hence, 

(𝑀 ∪ 𝐼) = (𝑅 ∪ 𝐼)𝑚2𝐼 + (𝑅 ∪ 𝐼)𝑚3𝐼 + ⋯ + (𝑅 ∪ 𝐼)𝑚𝑛𝐼 

Just keep going back to this line of reasoning until we get (𝑀 ∪ 𝐼) = (𝑅 ∪ 𝐼)𝑚𝑖𝐼 

for some 𝑖. Thus (𝑀 ∪ 𝐼) is a cyclic module. And from the hypothesis (𝑀 ∪ 𝐼) is 

torsionless, consequently, by Theorem 4.9, (𝑅 ∪ 𝐼) is a Neutrosophic Q-F ring. 

 

Theorem 4.13. An Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as 

Neutrosophic Q-F iff all torsionless (𝑅 ∪ 𝐼)-module is f-generated semi hollow. 

 

Proof: Assuming that (𝑅 ∪ 𝐼) is an Neutrosophic Noetherian Q-F ring, and 

assume (𝑀 ∪ 𝐼) is a torsionless (𝑅 ∪ 𝐼)-module. Then by Theorem 4.9, we have 

(𝑀 ∪ 𝐼) represents Neutrosophic cyclic (𝑅 ∪ 𝐼)-module. After that it is 

Neutrosophic f-generated and consequently all proper Neutrosophic submodule 

of (𝑀 ∪ 𝐼) contained in maximal Neutrosophic submodule, but by Lemma 3.4, 
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(𝑀 ∪ 𝐼) has a Neutrosophic  submodule that is unique maximal. Therefore is a 

Neutrosophic semihollow module. 

Conversely, assuming that (𝑀 ∪ 𝐼) is a torsionless semihollow and a f-generated, 

therefore it is local. Consequently, is a Neutrosophic hollow and we have f-

generated. Hence is a Neutrosophic cyclic and then by Theorem 4.9, (𝑅 ∪ 𝐼) is 

Q-F ring. 

Theorem 4.14. Assuming that (𝑀 ∪ 𝐼) is non-zero Neutrosophic module. Then 

an Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as a Neutrosophic Q-F iff 

every Neutrosophic torsionless (𝑅 ∪ 𝐼)-module is hollow and 𝑅𝑎𝑑 ( 𝑀 ∪ 𝐼) ≠

(𝑀 ∪ 𝐼). 

Proof: Assuming that a ring (𝑅 ∪ 𝐼) is the Neutrosophic Noetherian Q-F, and 

assume (𝑀 ∪ 𝐼) be a  torsionless Neutrosophic hollow module, then by Theorem 

4.9, (𝑀 ∪ 𝐼) represents Neutrosophic cyclic module. After that (𝑀 ∪ 𝐼) is the 

Neutrosophic f-generated module. Consequently, (𝑀 ∪ 𝐼) has a submodule that 

is maximal, which suggests that 𝑅𝑎𝑑 ( 𝑀 ∪ 𝐼) ≠ (𝑀 ∪ 𝐼). 

Conversely, assume that (𝑀 ∪ 𝐼) is a torsionless hollow module and Rad (𝑀 ∪

𝐼) ≠ (𝑀 ∪ 𝐼), then Rad (𝑀 ∪ 𝐼) ≪ (𝑀 ∪ 𝐼) . also through Lemma 3.4,  

𝑅𝑎𝑑 (𝑀 ∪ 𝐼) is the maximal submodule that is unique from (𝑀 ∪ 𝐼) and thus 

(𝑀 ∪ 𝐼) 𝑅𝑎𝑑 (𝑀 ∪ 𝐼)⁄  represents simple module and hence cyclic. We claim that 

(𝑀 ∪ 𝐼) = (𝑅 ∪ 𝐼)𝑚𝐼. Let 𝑤𝐼 ∈ (𝑀 ∪ 𝐼) then 𝑤𝐼 + 𝑅𝑎𝑑 (𝑀 ∪ 𝐼) ∈

(𝑀 ∪ 𝐼) 𝑅𝑎𝑑 (𝑀 ∪ 𝐼)⁄ , and therefore there is 𝑟𝐼 ∈ (𝑅 ∪ 𝐼) s.t. 𝑤𝐼 + 𝑅𝑎𝑑 (𝑀 ∪

𝐼) = 𝑟𝐼(𝑚𝐼 + 𝑅𝑎𝑑 (𝑀 ∪ 𝐼)) = (𝑟𝐼)(𝑚𝐼) + 𝑅𝑎𝑑 (𝑀 ∪ 𝐼). i.e., 𝑤𝐼 −

(𝑟𝐼)(𝑚𝐼) ∈ 𝑅𝑎𝑑 (𝑀 ∪ 𝐼), which implies that 𝑤𝐼 − (𝑟𝐼)(𝑚𝐼) = 𝑦 for some 𝑦 ∈

𝑅𝑎𝑑 (𝑀 ∪ 𝐼). Thus 𝑤𝐼 = (𝑟𝐼)(𝑚𝐼) + 𝑦 ∈ (𝑅 ∪ 𝐼) 𝑚𝐼 + 𝑅𝑎𝑑 (𝑀 ∪ 𝐼), hence 

(𝑀 ∪ 𝐼) = (𝑅 ∪ 𝐼) 𝑚𝐼 + 𝑅𝑎𝑑 (𝑀 ∪ 𝐼). But 𝑅𝑎𝑑 (𝑀 ∪ 𝐼) ≪ (𝑀 ∪ 𝐼) implies 

(𝑀 ∪ 𝐼) cyclic (𝑅 ∪ 𝐼)-module. Consequently, through Theorem 4.9, the ring 

(𝑅 ∪ 𝐼)  is Q-F. 
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Theorem 4.15. Consider (𝑀 ∪ 𝐼) be the non-zero Neutrosophic module. Then 

the Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as Q-F iff every 

Neutrosophic torsionless (𝑅 ∪ 𝐼)-module is semihollow Plus 𝑅𝑎𝑑(𝑀 ∪ 𝐼) ≠

(𝑀 ∪ 𝐼). 

Proof: Assuming that a ring (𝑅 ∪ 𝐼)  is Neutrosophic Noetherian Q-F, and 

assuming (𝑀 ∪ 𝐼) is Neutrosophic torsionless semihollow module, then by 

Theorem 4.9, We possess a module (𝑀 ∪ 𝐼) is the Neutrosophic cyclic. After that 

(𝑀 ∪ 𝐼) represents f-generated (𝑅 ∪ 𝐼)-module. Thus, (𝑀 ∪ 𝐼) has a submodule 

that is maximal, which suggests that 𝑅𝑎𝑑(𝑀 ∪ 𝐼) ≠ (𝑀 ∪ 𝐼). 

Conversely, assume (𝑀 ∪ 𝐼) is an Neutrosophic torsionless semihollow and 

𝑅𝑎𝑑(𝑀 ∪ 𝐼) ≠ (𝑀 ∪ 𝐼), therefore (𝑀 ∪ 𝐼) is a local Consequently (𝑀 ∪ 𝐼) 

Neutrosophic cyclic (𝑅 ∪ 𝐼)-module. Consequently, through Theorem 4.9, (𝑅 ∪

𝐼) represents Neutrosophic Q-F ring. 

Theorem 4.16. A Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as Q-F if 

all Neutrosophic torsionless (𝑅 ∪ 𝐼)-module is simple. 

Proof: Assuming that (𝑅 ∪ 𝐼) be the Neutrosophic Noetherian ring and assume 

(𝑀 ∪ 𝐼) is an Neutrosophic torsionless simple module and 𝑚𝐼 ∈ (𝑀 ∪ 𝐼). Both 

(𝑅 ∪ 𝐼)𝑚𝐼 and 𝐵 = { 𝑐𝐼 ∈ (𝑀 ∪ 𝐼)| (𝑅 ∪ 𝐼)𝑐𝐼 = 0 } are submodules from (𝑀 ∪

𝐼). Because (𝑀 ∪ 𝐼) is an Neutrosophic simple, then any of them is either 0 or 

(𝑀 ∪ 𝐼). But (𝑅 ∪ 𝐼)(𝑀 ∪ 𝐼) ≠ 0 leads to B ≠ (𝑀 ∪ 𝐼). Consequently 𝐵 = 0, 

whence (𝑅 ∪ 𝐼)𝑎𝐼 = (𝑀 ∪ 𝐼) for every non-zero 𝑚𝐼 ∈ (𝑀 ∪ 𝐼). Therefore (𝑀 ∪

𝐼) is cyclic. Consequently, through Theorem 4.9, (𝑅 ∪ 𝐼) represents 

Neutrosophic Q-F ring. 

Theorem 4.17. A Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as 

Neutrosophic Q-F iff every torsionless Neutrosophic (𝑅 ∪ 𝐼)-module is an local. 
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Proof: Assuming that the Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is Q-F, and 

assume (𝑀 ∪ 𝐼) be an Neutrosophic torsionless (𝑅 ∪ 𝐼)-module. After that by 

Theorem 4.9, we possess (𝑀 ∪ 𝐼) is cyclic (𝑅 ∪ 𝐼)-module also through Theorem 

4.12, (𝑀 ∪ 𝐼)  is a f-generated hollow. Hence (𝑀 ∪ 𝐼) has a submodule that is 

maximal say (𝐸 ∪ 𝐼). Assume the proper submodule from (𝑀 ∪ 𝐼) is (𝐾 ∪ 𝐼), if 

(𝐾 ∪ 𝐼) is not contained in (𝐾 ∪ 𝐼), then (𝐾 ∪ 𝐼) + (𝐸 ∪ 𝐼) = (𝑀 ∪ 𝐼), but (𝑀 ∪

𝐼) is a hollow module, thus (𝐸 ∪ 𝐼) = (𝑀 ∪ 𝐼), consequently, a contradiction 

arises. This suggests that each appropriate submodule of (𝑀 ∪ 𝐼) is found in (𝐸 ∪

𝐼), i.e., (𝑀 ∪ 𝐼) has a maximal submodule that is unique and contains all proper 

submodule from (𝑀 ∪ 𝐼). Hence (𝑀 ∪ 𝐼) is a local module. 

Conversely, assuming (𝑀 ∪ 𝐼) is Neutrosophic torsionless local (𝑅 ∪ 𝐼)-module 

then it has the maximal submodule (𝐸 ∪ 𝐼) that is unique by definition of local 

module which contains every proper submodule from (𝑀 ∪ 𝐼). Assuming 𝑤𝐼 ∈

(𝑀 ∪ 𝐼) with 𝑤𝐼 ∉ (𝐸 ∪ 𝐼) afterward (𝑅 ∪ 𝐼)𝑤𝐼 is a submodule from (𝑀 ∪ 𝐼). 

We argue that (𝑅 ∪ 𝐼)𝑤𝐼 = (𝑀 ∪ 𝐼). If not (𝑅 ∪ 𝐼)𝑤𝐼 is an proper submodule 

from (𝑀 ∪ 𝐼), hence (𝑅 ∪ 𝐼)𝑤𝐼 ≤ (𝐸 ∪ 𝐼) that means 𝑤𝐼 ∈ (𝐸 ∪ 𝐼) this results 

in a contradiction. Thus, (𝑀 ∪ 𝐼) is Neutrosophic cyclic module. Consequently, 

by Theorem 4.9, (𝑅 ∪ 𝐼)  is Q-F ring. 

Theorem 4.18. A Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as 

Neutrosophic Q-F if (𝑀 ∪ 𝐼) is an Neutrosophic torsionless and local lifting (𝑅 ∪

𝐼)-module and 𝑅𝑎𝑑(𝑀 ∪ 𝐼) ≠ (𝑀 ∪ 𝐼).  

Proof: Assuming that the Neutrosophic ring (𝑅 ∪ 𝐼)  is an Noetherian and (𝑀 ∪

𝐼) is an Neutrosophic torsionless and local lifting (𝑅 ∪ 𝐼)-module and 𝑅𝑎𝑑 (𝑀 ∪

𝐼) ≠ (𝑀 ∪ 𝐼), thus, there is a unique maximal submodule (𝑁 ∪ 𝐼) of (𝑀 ∪ 𝐼) and 

each submodule from (𝑁 ∪ 𝐼). Here exists submodules (𝐸 ∪ 𝐼) and (𝐹 ∪ 𝐼) from 

(𝑁 ∪ 𝐼) where (𝑀 ∪ 𝐼) = (𝐸 ∪ 𝐼) ⊕ (𝐹 ∪ 𝐼) and (𝑁 ∪ 𝐼) ∩ (𝐹 ∪ 𝐼) is small 

submodule of (𝐹 ∪ 𝐼). After that (𝑀 ∪ 𝐼) = (𝑀 ∪ 𝐼) ⊕ {0}, where {0} is 
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submodule of (𝑁 ∪ 𝐼), (𝑁 ∪ 𝐼) ∩ (𝑀 ∪ 𝐼) = (𝑁 ∪ 𝐼) and since (𝑀 ∪ 𝐼) is a local 

lifting module. Then (𝑁 ∪ 𝐼) ∩ (𝑀 ∪ 𝐼) = (𝑁 ∪ 𝐼) is small submodule from 

(𝑀 ∪ 𝐼). Thus (𝑀 ∪ 𝐼) is an Neutrosophic hollow module. Hence through 

Theorem 4.14, (𝑅 ∪ 𝐼)  is Q-F ring. 

Theorem 4.19. Let (𝑀 ∪ 𝐼) represents the Neutrosophic torsionless (𝑅 ∪ 𝐼)-

module. Then a Neutrosophic Notherian ring (𝑅 ∪ 𝐼) is referred to as 

Neutrosophic Q-F if 𝑅𝑎𝑑(𝑀 ∪ 𝐼) is small and maximal Neutrosophic submodule 

in (𝑀 ∪ 𝐼). 

Proof: Assuming that the Neutrosophic ring (𝑅 ∪ 𝐼) is an Noetherian also assume 

(𝑀 ∪ 𝐼) is an Neutrosophic torsionless (𝑅 ∪ 𝐼)-module. Suppose that 𝑅𝑎𝑑(𝑀 ∪

𝐼) is a small and maximal submodule in (𝑀 ∪ 𝐼). First we want to demonstrate 

that 𝑅𝑎𝑑 (𝑀 ∪ 𝐼) is a maximal submodule in (𝑀 ∪ 𝐼) that is unique. suppose 

(𝐷 ∪ 𝐼) is another submodule in (𝑀 ∪ 𝐼) that is maximal, then (𝑀 ∪ 𝐼) = (𝐷 ∪

𝐼) + 𝑅𝑎𝑑 (𝑀 ∪ 𝐼), but 𝑅𝑎𝑑 (𝑀 ∪ 𝐼) ≪ (𝑀 ∪ 𝐼) which implies that (𝐷 ∪ 𝐼) =

(𝑀 ∪ 𝐼), which is a contradiction. Thus 𝑅𝑎𝑑 (𝑀 ∪ 𝐼) is a maximal submodule in 

(𝑀 ∪ 𝐼) that is unique. We assert ownership of all proper submodule from (𝑀 ∪

𝐼) found in in 𝑅𝑎𝑑 (𝑀 ∪ 𝐼). Assuming (𝐸 ∪ 𝐼) represents proper submodule from 

(𝑀 ∪ 𝐼), so if (𝐸 ∪ 𝐼) is not contained in 𝑅𝑎𝑑 (𝑀 ∪ 𝐼), then (𝐸 ∪ 𝐼) + 𝑅𝑎𝑑 (𝑀 ∪

𝐼) = (𝑀 ∪ 𝐼). But 𝑅𝑎𝑑 (𝑀 ∪ 𝐼) ≪ (𝑀 ∪ 𝐼) which implies that (𝐸 ∪ 𝐼) = (𝑀 ∪

𝐼) then we get contradiction. Consequently a module (𝑀 ∪ 𝐼) is Neutrosophic 

local. Thus, through Theorem 4.17, (𝑅 ∪ 𝐼) represents Neutrosophic Q-F ring. 

Theorem 4.20. A Neutrosophic Noetherian ring (𝑅 ∪ 𝐼) is referred to as 

Neutrosophic Q-F iff every non-zero torsionless factor module of (𝑀 ∪ 𝐼) in 

decomposable. 

Proof: Assuming that the ring (𝑅 ∪ 𝐼) is Neutrosophic Noetherian Q-F, also 

assume (𝑀 ∪ 𝐼) be a non-zero Neutrosophic torsionless factor module. Then 

through Theorem 4.9, We possess (𝑀 ∪ 𝐼) is Neutrosophic cyclic (𝑅 ∪ 𝐼)-
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module. Assume (𝑀 ∪ 𝐼) (𝐷 ∪ 𝐼)⁄ ≠ 0 is a factor module from (𝑀 ∪ 𝐼). Given 

the Lemma 3.4 and Lemma 3.8, we possess (𝑀 ∪ 𝐼) is a module for lifting 

locally. So (𝑀 ∪ 𝐼) (𝐷 ∪ 𝐼)⁄  represents module to lifting locally through Lemma 

3.9. Thus through Lemma 3.10, we obtain (𝑀 ∪ 𝐼) (𝐷 ∪ 𝐼)⁄  be an decomposable. 

Conversely, Assume (𝐷 ∪ 𝐼) is maximal submodule from (𝑀 ∪ 𝐼) and assume 

(𝐿 ∪ 𝐼) is a non-zero submodule from (𝐷 ∪ 𝐼). suppose that (𝑀 ∪ 𝐼) = (𝐿 ∪ 𝐼) +

(𝐾 ∪ 𝐼), where (𝐾 ∪ 𝐼) is submodule from (𝑀 ∪ 𝐼) through [34, lemma 1.2.10], 

we acquire (𝑀 ∪ 𝐼) (𝐿 ∪ 𝐼) ∩ (𝐾 ∪ 𝐼)⁄ ≅ (𝑀 ∪ 𝐼) (𝐿 ∪ 𝐼)⁄ ⊕ (𝑀 ∪ 𝐼) (𝐾 ∪ 𝐼)⁄ . 

But (𝑀 ∪ 𝐼) (𝐿 ∪ 𝐼) ∩ (𝐾 ∪ 𝐼)⁄  is in decomposable then by second isomorphism 

theorem. Ether (𝑀 ∪ 𝐼) (𝐸 ∪ 𝐼)⁄ = 0 or (𝑀 ∪ 𝐼) (𝐾 ∪ 𝐼)⁄ = 0. Since (𝐿 ∪ 𝐼) is 

submodule of (𝐷 ∪ 𝐼), and (𝐷 ∪ 𝐼) is submodule from (𝑀 ∪ 𝐼). Then (𝐿 ∪ 𝐼) 

represents proper submodule from (𝑀 ∪ 𝐼). Hence (𝑀 ∪ 𝐼) (𝐿 ∪ 𝐼)⁄ ≠ 0 implies 

that (𝑀 ∪ 𝐼) (𝐾 ∪ 𝐼)⁄ = 0 and hence (𝑀 ∪ 𝐼) = (𝐾 ∪ 𝐼). Therefore (𝐿 ∪ 𝐼) is a 

small submodule from (𝑀 ∪ 𝐼). Thus (𝑀 ∪ 𝐼) is a Neutrosophic local lifting 

module and through Lemma 3.11, (𝑀 ∪ 𝐼) is cyclic. Thus by Theorem 4.9, ring 

(𝑅 ∪ 𝐼) is Neutrosophic Q-F. 
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5. Conclusion 

In this research article, we studied the relation between torsionless cyclic R-

module and  quasi-Frobenius rings. Also we studied some relationships through 

which we obtained the cyclic R-module thus we obtained the Q-F ring. In addition 

we studied an relation between isomorphic through we obtain the Noetherian ring 

and thus we obtained an Q-F ring. Additionally, we studied an relation between 

torsionless cyclic module and projective and injective module which through we 

garnered the quasi-Frobenius ring. Finally, we discussed some concepts such as: 

the singw, local and simple module and Its relationship to the quasi-Frobenius 

rings. 
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