

Orthogonal Reverse Derivations with Ideal of semiprime Sets.

Entisar Majid khazil

انتصار ماجد خزعل

Ministry of Education

وزارة التربية\ الكلية التربوية المفتوحة

Open Educationl College

مركز الرصافة الدراسي

The first Rusafa

مدرس مساعد

Baghdad

Iraq

Orthogonal Reverse Derivations with Ideal of semiprime Sets.

Entisar Majid khazil

انتصار ماجد خزعل

Ministry of Education

وزارة التربية| الكلية التربية المفتوحة

Open Educationl College

مركز الرصافة الدراسي

The first Rusafa

مدرس مساعد

Baghdad

Iraq

Abstract

I concluded in my research that the nature of relationship between the orthogonality of antiderivatives with the ideal on prime quasi-sets, and we defined the orthogonality of antiderivatives, and we studied the relationship with the ideal on prime quasi-sets, and we reached results and theories that link them.

Subject Classification: 16N60, 16A70, 16Y30

Keywords:

Reverse derivations, orthogonality, semiprime rings, ideals within semiprime rings.

1. Introduction

In the theory of ring structures, derivations play a fundamental role. The assignment operation $f: R \rightarrow R$ is called a derivative on the set R if it satisfies the product rule $f(ab) = f(a)b + af(b)$ for all elements $a, b \in R$, as stated in references [6] and [7].

Building upon this foundational concept, researchers in [2] and [3] have investigated orthogonal derivations in sets. Two mappings F and H on a set R are considered orthogonal if they satisfy the condition $F(a)RH(b) = 0 = H(b)RF(a)$ for all $a, b \in R$.

The study of antiderivatives on semi-primary sets was explored by Saman and Alemany [5], extending the classical theory of derivatives to this specialized context. Further advancing this area of research, the concept of perpendicularity for inverse derivations was introduced in [1]. Specifically, two reverse derivations F and H of a set R are termed orthogonal when $F(x)RH(y) = 0 = H(y)RF(x)$ for all $x, y \in R$.

In the context of semi-primary sets, we study additive subsets that form ideals. Let R be a semi-primary set. A plural subset W of R is called a left (or right) ideal of R if $RW \subseteq W$ (or $WR \subseteq W$), as indicated in [4].

It is important to note that for any subset W of R , the left-handed pesticide $I(W)$ and the right-handed pesticide $r(W)$ are defined as $I(W) = \{x \in R : xW = 0\}$ and $r(W) = \{x \in R : Wx = 0\}$ respectively. In this paper, we have established several theorems and results related to our topic, which is the perpendicularity of antiparallel derivatives to the ideal on semi-elementary sets.

2-The Results

Puzzle 21 [4]: Let R be a semi-prime set without twist 2, let W be a non-zero ideal of R , and let M and N be elements of R such that:

$$A_{nn1}(w) \text{ if } myn + nym = 0 \text{ then } myn = nym = 0$$

proof: let p and p' be two arbitrary components of w , then by postulate

$$\begin{aligned} (MqN) q'(MqN) &= - (NqM) p' (MqN) \\ &= - (N(qMp')M)qN \\ &= (M(pMp') N) qN \\ &= - Mq (Mq'N) qN \\ &= - Mq (Nq'M) qN \\ &= - (MpN) p' (MpN) \end{aligned}$$

This implies $2(MqN) p' (MqN) = 0$

Since R is 2-torsion free there for $(MqN) q' (MqN) = 0$

hence $MqN \in A_{nn1}(w)$

we found $MqN = 0$, for all $q \in w$

In the same way we also find $NqM = 0$

Hence $MqN = NqM = 0$

Puzzle 2.2

Let R be a twist-free semi-prime set, and let W be a non-zero ideal of R so that $\text{Ann}_1(W) = 0$. If M and N are elements of R so that $M(p)WN(p) = 0$ and $M(p)WN(q) = 0$ for all $p, q \in R$, then $M(p)WN(q) = 0$.

Proof: if we assume $M(p)sN(p) = 0$ for all $s \in W$. By linearization, we obtain: $M(p)sN(q) + M(q)sN(p) = 0$

This leads to: $M(p)sN(q) - M(p)sN(q) = -(M(q)sN(p) - M(p)sN(q)) = 0$

Therefore, $M(p)sN(q) = 0$, which means that $M(p)sN(q) \in \text{Ann}_1(W) = 0$. Hence, $M(p)sN(q) = 0$. \square

Main Theorems

Theorem 3.1

Let R be a semiprime set, and let M, N be reverse derivations of R . Let W be a non-zero ideal of R such that $\text{Ann}_1(W) = 0$. Then: $M(p)N(q) + N(p)M(q) = 0$ if and only if M and N are orthogonal.

Proof: (\Rightarrow) Suppose that $M(p)N(q) + N(p)M(q) = 0$. Replacing x by xf , we get: $M(pf)N(q) + N(pf)M(q) = 0$

Expanding using the reverse derivation property: $M(f)p + fM(p)N(q) + N(f)p + fN(p)M(q) = 0$

for all $p, q, f \in W$. By Lemma 2.1, we conclude that M and N are orthogonal.

(\Leftarrow) Contrariwise, if M and N are orthogonal, then: $M(p)WN(q) = 0 = N(q)WM(p)$

This gives us $M(p)sN(q) = 0$ and $N(p)sM(q) = 0$ for all $s \in W$. By Lemma 2.2, we obtain $M(pf)N(q) = 0$ and $N(pf)M(q) = 0$. Since $M(p)N(q) \in \text{Ann}_1(W)$ and $N(p)M(q) \in \text{Ann}_1(W)$, we have: $M(p)N(q) + N(p)M(q) = 0$

Theorem 3.2

Let R be a non-twisting semi-prime set, and let M and N be antiderivatives of R . The following provisions are equivalent: (i) M and N are perpendicular (ii) $MN = 0$ (iii) $MN + NM = 0$ (iv) MN is an antiderivative

Proof: This theorem follows from Lemma 2.1 and Theorem 3.1. \square

Theorem 3.3

Let R be a 2-torsion free semiprime set, and let M and N be reverse derivations of R . Let W be a non-zero ideal of R such that $\text{Ann}_1(W) = 0$. Then the following are equivalent: (i) M and N are orthogonal on R (ii) $MN = 0$ on W (iii) $MN + NM = 0$ on W (iv) MN is a reverse derivation on W

Proof: (i) \Rightarrow (ii), (iii), and (iv): These implications follow from Theorem 3.2.

(ii) \Rightarrow (i): The linearization of $M(p+q)N(p+q) = 0$ gives: $M(p)N(q) + M(q)N(p) = 0$ for all $p, q \in R$

Replacing y by yz , we obtain: $M(p)N(qz) + M(qz)N(p) = 0$ $M(p)(N(z)q + fN(q)) + (M(z)q + fM(q))N(p) = 0$
 $M(p)N(z)q + M(p)fN(q) + N(p)M(z)q + fM(q)N(p) = 0$

Through careful manipulation and using the properties of reverse derivations, we arrive at: $M(p)N(q) + N(p)M(q) = 0$

Since $M(p)N(q) \in \text{Ann}_1(W) = 0$, we have $M(p)N(q) = 0$. Hence, M and N are orthogonal.

(iv) \Rightarrow (i): If we assume MN is a reverse derivation from W to R . Then: $MN(pq) = M(N(pq)) = 0 = M(N(q)p + qN(p)) = MN(q)p + MqN(p)$

Through substitution and manipulation, we obtain $M(p)N(q) = 0$. Since $M(p)N(q) \in \text{Ann}_1(W) = 0$, we conclude that M and N are orthogonal. \square

Corollary 3.4

Corollaries

Let R be a twist-free semi-prime set, and let M be an antiderivative of R . If M^2 is also a derivative, then $M = 0$.

Proof: This follows directly from part (ii) of Theorem 3.3. \square

Corollary 3.5

Let R be a twist-free semi-prime set , and let M be an antiderivative of R . If $M(p)M(p) = 0$ for all $p \in R$, then $M = 0$.

Corollary 3.6

Let R be a twist-free set ,Let M and N be antiderivatives of R . If $M^2 = N^2$, then either $M = -N$ or $M = N$.

Theorem 3.7

Let R be a twist-free semi-prime set, and let M and N be antiderivatives of R . If $M(p)M(p) = N(p)N(p)$ for all $p \in R$, then $M + N$ and $M - N$ are orthogonal. Hence, there exist ideals H_1 and H_2 of R , such that $H = H_1 \oplus H_2$ is a direct principal sum in R , $M = N$ on H_1 , and $M = -N$ on H_2 . Proof: Note that: $(M + N)(p)(M - N)(p) + (M - N)(p)(M + N)(p) = 0$ for all $p \in R$ Applying parts (ii) and (iii) of Theorem 3.3, we obtain the desired result.

Corollary 3.8

Let R be a kink-free prime set, and let M and N be antiderivatives of R . If $M(p)M(p) = N(p)N(p)$ for all $p \in R$, then $M = N$ or $M = -N$.

Proof: This follows directly from Theorem 3.7.

Corollary 3.9

Let R be a semi-prime set with property not equal to 2. Let M and N be antiderivatives of R if $M(p)^2 = N(p)^2$, for all $p \in R$ then either $M = -N$ or $M = N$.

References

- [1] Abdul Rhman, M, "On Orthogonal Reverse Derivations of Semi Prime Rings", Iraq Journal of Science, Vol.50, No. 1, pp. 84-88, 2009.
- [2] Argac. V, A. Nakajima and E.Albas, ce On Orthogonal Generalized Devirations of Semi prime Rings, Turk, J. Math, 28, PP-185-194, 2004
- [3] Dutta T.k and S.k. Sardar, Semi prime Ideal and Irreducible Ideal of semiring, Novi Sad J. Math, Vol. 30, No.1, pp. 97-108, 2000
- [4] Fentisar M.K. "Ideal of semiprime Rings with Orthogonal Higher Derivations", Journal of Discrete Mathematical Sciences and cryptography, 2021
- [5] M. Samman, N. Alyamani, "Derivations and Reverse Derivations In Semi prime Rings", International Mathematical forum, 2, No.39, 1895-1902.2007
- [6] kamal A. M, (6,j) - Derivations on Prime -Ring", M.SC. Thesis Department of Math, College of Education , Al-Mustansiriya University, 2012

[7] Posner E.C., Derivations in prime Ring's, Pro Amer Math, Soc., YoL. 8, pp. 1093-1100, 1957.