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Abstract: 

 This study is concerned with finding a statistical distribution that deals with a Neutrosophic random 

variable and Neutrosophic parameters called Neutrosophic Hybrid Weibull Inverse Weibull (NHWIW) 

distribution. The basic functions of proposed distribution are found, as well as many statistical properties 

of distribution with an estimation of the model parameters in three different techniques, with a Monte 

Carlo simulation to determine the estimation efficiency of NHWIW distribution, with a comparison with 

three measures to determine the best method for estimation. A practical application is also conducted on 

two types of Neutrosophic real data, the first represented by mortality data for children under five years of 

age, and the second is COVID-19 in Netherlands for thirty days, where the analysis efficiency of the 

NHWIW distribution is determined by comparing it with six other distributions using 4 information criteria 

and 4 statistical measures, which showed the efficiency and flexibility of NHWIW distribution. 

Keywords: HWG-family, Neutrosophic data, Bias, Cramér-von Mises, and flexibility. 

1. Introduction: 

Probability distributions are a fundamental tool in statistical modeling used to describe and analyze 

various phenomena in many fields. One of the most prominent methods recently developed to expand the 

scope of basic distributions is the T-X method, which provides a flexible framework for creating new 

distributions with improved mathematical properties, making them more accurate in representing real-

world data. The methods is based on forming a family of complex distributions using transformation 

functions, which contributes to enhancing the flexibility and ability to deal with complex properties, such 

as heterogeneous or asymmetrically distributed data [1]. Examples of this method include: BIIIEE-X 

family [2], NOGEE−G family [3], WEE-X Family [4], OLG family [5], NGOF-G Family [6], EOIW-G 

Family [7], GOM-G family [8], and HOE-Φ family [9]. This study based on HWG family which was has 

a CDF function by form [10]: 

 
𝐹𝐻𝑊𝐺(𝑥, 𝑎, 𝑏, 𝜁) = 1 − 𝑒(−𝑎[−𝒢(𝑥;𝜀).𝑙𝑜𝑔(1−𝒢(𝑥;𝜀))]

𝑏
), 𝑥 ≥ 0, 𝑎, 𝑏 > 0 (1) 

 And PDF function by form: 

 
𝑓𝐻𝑊𝐺(𝑥, 𝑎, 𝑏, 𝜁) = 𝑎𝑏 𝑔(𝑥; 𝜀) [

𝒢(𝑥; 𝜀)

1 − 𝒢(𝑥; 𝜀)
− 𝑙𝑜𝑔(1 − 𝒢(𝑥; 𝜀))] 

                              

× [−𝒢(𝑥; 𝜀). 𝑙𝑜𝑔(1 − 𝒢(𝑥; 𝜀))]
𝑏−1

𝑒(−𝑎[−𝒢(𝑥;𝜀).𝑙𝑜𝑔(1−𝒢(𝑥,𝜀))]
𝑏
)
 

(2) 

Where 𝒢(𝑥; 𝜀), and 𝑔(𝑥; 𝜀) are CDF and PDF functions for any baseline distribution and 𝑎, 𝑏 ≥ 0 are 

shapes parameters for HWG family. 

 On other hand, the Neutrosophic logic (N.L) is a recent development in the field of fuzzy and 

uncertain data analysis. This logic aims to address ambiguity and uncertainty in data by introducing three 

main dimensions: Truth (T), falsehood (F), and indeterminacy (I). this framework provides an effective 

way to model data that cannot be conclusively characterized using traditional methods. There are two types 
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of N.L: the traditional method, in which the data is divided into three parts and then dealt with by using, 

for example, the triangular function, in which the peaks represent the T values and the troughs represent 

F values and what is an between represents I values, or trapezoidal function in the same manner. As for 

the second method, which depends on the values of intervals and contains all parts of N.L, which called 

the direct method, and it’s the method used in forming the proposed distribution. 

Focuses on finding a statistical distribution that deals with a Neutrosophic variables and 

parameters. The main gap is the lack of previous research that integrates Neutrosophic data with complex 

distributions such as a distribution based on a hybrid family of Weibull distribution and a hybrid integral 

limit. Existing studies often focus on traditional data or on specific distributions without considering 

Neutrosophic data of an uncertain or ambiguous nature. The aim of the study is to develop a " Neutrosophic 

Hybrid Weibull Inverse Weibull" and test its efficiency and flexibility on real Neutrosophic data using 

multiple estimation methods, and compare with other distributions to determine the efficiency and 

flexibility in dealing with Neutrosophic data. 

2. Neutrosophic Hybrid Weibull Inverse Weibull (NHWIW) distribution 

Let 𝑋 be a random variable, then the CDF and PDF functions for Inverse Weibull distribution has a forms 

[11]: 

 𝒢(𝑥; 𝑞, 𝑝) = 𝑒−𝑞𝑥−𝑝
     , 𝑞, 𝑝, 𝑥 > 0 (3) 

 𝑔(𝑥; 𝑞, 𝑝) = 𝑞𝑝𝑥−(𝑝+1)𝑒−𝑞𝑥−𝑝
    , 𝑞, 𝑝, 𝑥 > 0 (4) 

Where 𝑞, 𝑝 are shape parameters for Inverse Weibull distribution. 

 To get the CDF function for Hybrid Weibull Inverse Weibull we combine equation (1) with 

equation (3) by form: 

 
𝐹(𝑥) = 1 − 𝑒

(−𝑎[−𝑒−𝑞𝑥−𝑝
.𝑙𝑜𝑔(1−𝑒−𝑞𝑥−𝑝

)]
𝑏
)
, 𝑥 𝑎, 𝑏, 𝑞, 𝑝 > 0 

(5) 

 The PDF function for Hybrid Weibull Inverse Weibull (HWIW) we combine equation (2) with 

equation (3) and (4) to get it by form: 

 
𝑓(𝑥) = 𝑎𝑏 𝑞𝑝𝑥−(𝑝+1)𝑒−𝑞𝑥−𝑝

[
𝑒−𝑞𝑥−𝑝

1−𝑒−𝑞𝑥−𝑝 − 𝑙𝑜𝑔(1 − 𝑒−𝑞𝑥−𝑝
)]  

          × [−𝑒−𝑞𝑥−𝑝
. 𝑙𝑜𝑔(1 − 𝑒−𝑞𝑥−𝑝

)]
𝑏−1

𝑒
(−𝑎[−𝑒−𝑞𝑥−𝑝

.𝑙𝑜𝑔(1−𝑒−𝑞𝑥−𝑝
)]

𝑏
)
 

(6) 

 In order to integrate the HWIW distribution with N.L, the random variable and parameters of 

HWIW distribution are converted to Neutrosophic random variable and Neutrosophic parameters as 

follows: 

Let 𝑋𝑁 = 𝑑 + 𝑡𝐼, 𝑡𝐼 ∈ [𝑋𝐿 , 𝑋𝑈], where 𝑋𝐿, 𝑋𝑈 are lower and upper values of the neutrosophic 

random variable having determined part 𝑑 and indeterminate part 𝑡𝐼, 𝑡𝐼 ∈ [𝐼𝐿 , 𝐼𝑈]. Note that the NHWIW 

distribution reduces to classical HWIW distribution when 𝑋𝐿 = 𝑋𝑈. The neutrosophic cumulative density 

function (NCDF) of NHWIW has a Neutrosophic shape parameters 𝑎𝑁 ∈ [𝑎𝐿 , 𝑎𝑈], 𝑏𝑁 ∈ [𝑏𝐿 , 𝑏𝑈], 𝑞𝑁 ∈
[𝑞𝐿 , 𝑞𝑈], and 𝑝𝑁 ∈ [𝑝𝐿 , 𝑝𝑈], has the form: 

 

𝐹(𝑥𝑁) = 1 − 𝑒
(−𝑎𝑁[−𝑒

−𝑞𝑁𝑥𝑁
−𝑝𝑁

.𝑙𝑜𝑔(1−𝑒
−𝑞𝑁𝑥𝑁

−𝑝𝑁
)]

𝑏𝑁

)

,

𝑥𝑁 𝑎𝑁 , 𝑏𝑁 , 𝑞𝑁 , 𝑝𝑁 > 0 

(7) 

 

To obtain the nature of NCDF, the function is plotted with different intervals of parameters and in 

2-dimentional and 3-dimensional forms as follows: 
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Figure 1. plot of NCDF for NHWIW distribution 

 

And the probability density function (NCDF) of NHWIW has a form: 

 
𝑓(𝑥𝑁) = 𝑞𝑁𝑝𝑁𝑥𝑁

−(𝑝𝑁+1)
𝑒−𝑞𝑁𝑥𝑁

−𝑝𝑁
[

𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

1 − 𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

− 𝑙𝑜𝑔 (1 − 𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

)] 

    × [−𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

. 𝑙𝑜𝑔 (1

− 𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

)]
𝑏𝑁−1

 𝑒
(−𝑎𝑁[−𝑒

−𝑞𝑁𝑥𝑁
−𝑝𝑁

.𝑙𝑜𝑔(1−𝑒
−𝑞𝑁𝑥𝑁

−𝑝𝑁
)]

𝑏𝑁

)

 

(8) 

 

To obtain the nature of NCDF, the function is plotted with different intervals of parameters and in 

2-dimentional and 3-dimensional forms as follows: 

 

Figure 2. plot of NPDF for NHWIW distribution 

 

 While the survival function foe NHWIW distribution given by formula [12]: 
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𝑆(𝑥𝑁) = 𝑒
(−𝑎𝑁[−𝑒

−𝑞𝑁𝑥𝑁
−𝑝𝑁

.𝑙𝑜𝑔(1−𝑒
−𝑞𝑁𝑥𝑁

−𝑝𝑁
)]

𝑏𝑁

)

 
(9) 

 And the hazard function has a formula: 

 

ℎ(𝑥𝑁) =

𝑞𝑁𝑝𝑁𝑥𝑁
−(𝑝𝑁+1)

𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

[
𝑒−𝑞𝑁𝑥𝑁

−𝑝𝑁

1 − 𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁 − 𝑙𝑜𝑔 (1 − 𝑒−𝑞𝑁𝑥𝑁

−𝑝𝑁
)]

[−𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

. 𝑙𝑜𝑔 (1 − 𝑒−𝑞𝑁𝑥𝑁
−𝑝𝑁

)]
1−𝑏𝑁

 (10) 

3. Properties for NHWIW distribution 

In this section we will prove some statistical properties for NHWIW distribution, and show what 

changing of classical IW distribution. 

3.1 NCDF and NPDF expansion 

Due to the difficulty of NCDF and NPDF functions in equations (7) and (8) respectively, these 

functions are simplified in order to simplify the proof of NHWIW distribution properties. This is done 

using binomial expansion, the exponential function expansion, and the logarithm expansion. Therefore, 

the simplified NCDF function is obtained as follows: 

 
𝐹(𝑥𝑁) = 1 − 𝜓 (𝑒−𝑞𝑁𝑥𝑁

−𝑝𝑁
)

𝑗+2𝑖𝑏𝑁

 (11) 

Where 𝜓 = ∑
(−1)𝑖+𝑖𝑏𝑁+𝑗

𝑖!

∞
𝑖=𝑗=0 𝑎𝑁

𝑖𝑑𝑖𝑏𝑁,𝑗, and 𝑑𝑖𝑏𝑁,𝑗 = 𝑗−1 ∑
𝑚(𝑖𝑏𝑁+1)−𝑗

𝑚+1

𝑗
𝑚=1    𝑓𝑜𝑟 𝑗 ≥ 0 𝑎𝑛𝑑 𝑑𝑖𝑏𝑁,0 = 1 

 By same way we can expansion NPDF function to get a form: 

 𝑓(𝑥𝑁) = MxN
−(pN+1)

e−(2ibN+2bN+j+k)qNxN
−pN

− 𝑁𝑥𝑁
−(𝑝𝑁+1)

𝑒−(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)𝑞𝑁𝑥𝑁
−𝑝𝑁

 
(12) 

Where 𝑀 = ∑
(−1)𝑖+𝑖𝑏𝑁+𝑏𝑁−1+𝑗+𝑘

𝑖!
𝑎𝑁

𝑖+1𝑑𝑖𝑏𝑁+𝑏𝑁−1,𝑗
∞
𝑖=𝑗=𝑘=0 𝑏𝑁 𝑞𝑁𝑝𝑁 

And 𝑁 = ∑
(−1)𝑖+𝑖𝑏𝑁+𝑏𝑁−1+𝑗

𝑖!
𝑎𝑁

𝑖+1𝑑𝑖𝑏𝑁+𝑏𝑁−1,𝑗𝑑1,𝑧
∞
𝑖=𝑗=𝑧=0 𝑏𝑁 𝑞𝑁𝑝𝑁 

As 𝑑1,𝑧 = 𝑧−1 ∑
2𝑚−𝑗

𝑚+1

𝑗
𝑚=1       𝑓𝑜𝑟 𝑧 ≥ 0     𝑎𝑛𝑑 𝑑1,0 = 1 and 𝑑𝑖𝑏𝑁+𝑏𝑁−1,𝑗 =

𝑗−1 ∑
𝑚(𝑖𝑏𝑁+𝑏𝑁)−𝑗

𝑚+1

𝑗
𝑚=1       𝑓𝑜𝑟 𝑗 ≥ 0     𝑎𝑛𝑑 𝑑𝑖𝑏𝑁+𝑏𝑁−1,0 = 1 

3.2  Moment  
Let 𝑋𝑁 be any Neutrosophic random variable, then the 𝑛𝑡ℎ moment for NHWIW distribution is given 

by form [13], [14], [15], [16] 

 
𝜇𝑛 = 𝐸(𝑥𝑁

𝑛)𝑁𝐻𝑊𝐼𝑊 = ∫ 𝑥𝑁
𝑛

∞

−∞

𝑓(𝑥𝑁)𝑑𝑥𝑁 (13) 

By putting equation (12) in equation (13) we have got a form: 

𝜇𝑛 = M∫ xN
n−(pN+1)

e−(2ibN+2bN+j+k)qNxN
−pN∞

0
− 𝑁 ∫ 𝑥𝑁

𝑛−(𝑝𝑁+1)
𝑒−(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)𝑞𝑁𝑥𝑁

−𝑝𝑁∞

0
𝑑𝑥𝑁  

To get a final form: 

 
𝜇𝑛 =

Γ(
𝑛−𝑝𝑁

𝑝𝑁
)

𝑝𝑁𝑞𝑁

𝑛−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

𝑛−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

𝑛−𝑝𝑁
𝑝𝑁

]  (14) 

The first four moments are found by substituting the value of 𝑛 and as follows: 



358 
 

 
𝜇1 =

Γ(
1−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

1−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

1−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

1−𝑝𝑁
𝑝𝑁

]  (15) 

 
𝜇2 =

Γ(
2−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

2−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

2−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

2−𝑝𝑁
𝑝𝑁

]  (16) 

 
𝜇3 =

Γ(
3−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

3−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

3−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

3−𝑝𝑁
𝑝𝑁

]  (17) 

 
𝜇4 =

Γ(
4−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

4−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

4−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

4−𝑝𝑁
𝑝𝑁

]  (18) 

 From it, we can obtain the skewness and Kurtosis of NHWIW distribution respectively as follows 

[16]: 

 

𝑆𝐾𝑁𝐻𝑊𝐼𝑊 =

𝛤(
3−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

3−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

3−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

3−𝑝𝑁
𝑝𝑁

]

(
𝛤(

2−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

2−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

2−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

2−𝑝𝑁
𝑝𝑁

])

3
2

  (19) 

 

𝐾𝑈𝑁𝐻𝑊𝐼𝑊 =

𝛤(
4−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

4−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

4−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

4−𝑝𝑁
𝑝𝑁

]

(
𝛤(

2−𝑝𝑁
𝑝𝑁

)

𝑝𝑁𝑞𝑁

2−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

2−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

2−𝑝𝑁
𝑝𝑁

])

2 − 3  

 

(20) 

To know the change in the moments of NHWIW distribution with change in intervals of 

Neutrosophic parameters, table 1 shows a set of moments with variance, skewness, and Kurtosis as 

follows: 
Table.1 some intervals of moments for NHWIW 

𝑎𝑁 𝑏𝑁 𝑞𝑁 𝑝𝑁 𝝁̀𝟏𝑵
 𝝁̀𝟐𝑵

 𝝁̀𝟑𝑵
 𝝁̀𝟒𝑵

 𝝈𝑵
𝟐  𝑺𝑵 𝑲𝑵 

[1
.8

,2
.8

] 

[1
.6

,2
.6

] 

[1
.4

, 2
.4

] 

[1
.1

,2
.1

] 

[2.146064,

2.857927] 

[4.723157,

10.57421] 

[10.64869,

52.02946] 

[24.5692,3

54.4007] 

[0.117566,

2.406463] 

[1.037403,

1.513134] 

[1.101352,

3.169558] 

[1
.2

,2
.2

] 

[2.0717, 

2.593549] 

[4.391856,

8.343002] 

[9.518114,

33.94803] 

[21.06914,

179.7407] 

[0.099915,

1.616506] 

[1.034139,

1.408741] 

[1.092322,

2.58227] 

[1
.6

, 2
.6

] 

[1
.3

,2
.3

] 

[2.077192,

2.651157] 

[4.406707,

8.434903] 

[9.540035,

32.68622] 

[21.05919,

157.4864] 

[0.09198,1

.40627] 

[1.031285,

1.334273] 

[1.084459,

2.213517] 

[1
.4

,2
.4

] 

[2.014016,

2.458261] 

[4.135742,

7.066473] 

[8.652692,

24.02667] 

[18.43118,

98.13544] 

[0.079482,

1.023426] 

[1.028777,

1.279056] 

[1.077572,

1.965262] 
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[1
.9

,2
.9

]] 

[1
.8

, 2
.8

] 

[1
.5

,2
.5

] 

[2.047589,

2.552581] 

[4.257436,

7.198049] 

[8.983496,

22.42205] 

[19.22557,

77.17473] 

[0.064815,

0.682379] 

[1.022641,

1.161056] 

[1.060677,

1.489517] 

[1
.6

,2
.6

] 

[1.991347,

2.400354] 

[4.022199,

6.28886] 

[8.235853,

17.98276] 

[17.08652,

56.13042] 

[0.056736,

0.527161] 

[1.020971,

1.140246] 

[1.056152,

1.419235] 

[1
.9

,2
.9

] 

[1
.7

,2
.7

] 

[1.966076,

2.347823] 

[3.916789,

5.956809] 

[7.902665,

16.33094] 

[16.14081,

48.38371] 

[0.051334,

0.444536] 

[1.019479,

1.123287] 

[1.052119,

1.363552] 

[1
.8

,2
.8

] 

[1.894836,

2.153215] 

[3.634783,

5.001715] 

[7.055468,

12.54589] 

[13.85253,

34.02125] 

[0.04438,0

.36538] 

[1.018141,

1.121561] 

[1.048509,

1.359917] 

Table 1 presents the different values of statistical moments (mean, variance, skewness, kurtosis) for 

the NHWIW distribution with changes in the upper and lower boundary parameters of the unspecified 

variables. The values show that the moments of the distribution change significantly when the boundaries 

are modified. Skewness and kurtosis are used to assess the shape of the distribution. The mean expresses 

the expected center of the distribution and changes with the variation of the ambiguous parameters. The 

variance. High values indicate that the distribution can handle disparate and scattered data, while it 

indicates the level of concentration in the values. Low values indicate that the distribution can handle data 

with a wide range. Low values indicate that the distribution is balanced, which enhances its suitability to 

realistic data. 

3.3 Moment Generating Function 

Let 𝑋𝑁 be any Neutrosophic random variable, then the Moment Generating Function (MGF) for 

NHWIW distribution is given by form [17] , [18] : 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥𝑁)𝑑𝑥
∞

−∞

 

 From equation (14) and using exponential expansion we get a final form: 

 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0 [

𝛤(
𝑛−𝑝𝑁

𝑝𝑁
)

𝑝𝑁𝑞𝑁

𝑛−𝑝𝑁
𝑝𝑁

[
𝑀

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)

𝑛−𝑝𝑁
𝑝𝑁

−
𝑁

(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)

𝑛−𝑝𝑁
𝑝𝑁

]]  (21) 

3.4 Quantile function of NHWIW distribution 

     The Quantile function has a major role in application of Monte Carlo simulation and represents the 

inverse of NCDF function 𝑄(𝑢) = 𝐹−1(𝑢) [19], which is obtained for the NHWIW distribution as follows:  

 

𝑄(𝑢) = [
𝑙𝑜𝑔[

Θ

Θ+𝑊−1(Θ)𝑒Θ]

𝑞𝑁
]

−1

𝑏𝑁

, Θ = [
−𝑙𝑜𝑔(1−𝑢)

𝑎𝑁
]

1

𝑏𝑁   (22) 

 Table 2 expresses a set of intervals of the Quintile function values of NHWIW for different 

intervals as follow: 

 Table 2: Quintile function values of NHWIW for different intervals 

𝑠𝑁 
(𝑎𝑁 , 𝑏𝑁 , 𝑞𝑁 , 𝑝𝑁) 

[0.4, 0.8],[ 1.1, 1.9] 

[0.4, 1.4],[ 1.2, 1.7] 

[0.6, 1.6],[1, 1.5] 

[0.4, 1.4],[1, 1.5] 

[0.5,1.5],[ 1.1.1,6] 

[0.51.5],[ 1.1,1.6] 

[1.2,1.7],[1,1.5] 

[0.8,1.8],[ 1.2,1.7] 

[1.1,1.7],[ 1.9,1.9] 

[0.7,1.7],[1.5,2] 

0.1 [0.5880204,1.50829] [0.407121, 1.194348] [0.622559, 1.33252] [0.669702, 3.3304] [0.9420654, 3.28916] 

0.2 [0.8511505,1.75326] [0.6020268, 1.40746] [0.898051, 1.54565] [0.86103, 1.38635] [1.1027903, 1.56190] 

0.3 [1.1616532, 1.95887] [0.8308531, 1.59006] [1.214072, 1.72384] [1.047516, 1.5928] [1.2370894, 1.68682] 
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0.4 [1.5748618, 2.15671] [1.1324191, 1.76916] [1.621220, 1.89484] [1.253187, 1.7644] [1.3657090, 1.80121] 

0.5 [2.1794962, 2.36248] [1.5680264, 1.95911] [2.07237,2.194616] [1.499006, 1.9283] [1.4988826, 1.91481] 

0.6 [2.590992,3.165274] [2.174631,2.267291] [2.26927,3.086756] [1.816802, 2.0979] [1.6459544, 2.03529] 

0.7 [2.863979,5.033473] [2.43857,3.5705340] [2.50435,4.680039] [2.270645, 2.2853] [1.8204959, 2.17226] 

0.8 [3.226530,9.576866] [2.800418,6.695981] [2.816750,8.25737] [2.50855,3.02963] [2.0505678, 2.34410] 

0.9 [3.821119,28.62166] [3.423055,19.87242] [3.33042,21.51546] [2.80425,4.80523] [2.4236659, 2.60524] 

Table 2 presents the values of the quantile function for the NHWIW distribution for different 

probability intervals. The different values reflect changes in the range of the data distribution based on the 

probability. Narrower intervals show greater accuracy in representing the data, while wider intervals 

reflect greater flexibility. Small values indicate the distribution's ability to provide accurate boundaries for 

the intervals. 

3.5 Renyi entropy 

The Renyi entropy is given by form [20], [21] : 

𝐼𝑅(𝑐)𝑁𝐻𝑊𝐼𝑊 =
1

1 − 𝑐
𝑙𝑜𝑔 ∫ 𝑓(𝑥𝑁)𝑐𝑑𝑥

∞

0

 

𝐼𝑅(𝑐)𝑁𝐻𝑊𝐼𝑊 =
1

1−𝑐
𝑙𝑜𝑔 ∫ (𝑀𝑥𝑁

−(𝑝𝑁+1)
𝑒−(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑘)𝑞𝑁𝑥𝑁

−𝑝𝑁
−

∞

0

𝑁𝑥𝑁
−(𝑝𝑁+1)

𝑒−(2𝑖𝑏𝑁+2𝑏𝑁+𝑗+𝑧)𝑞𝑁𝑥𝑁
−𝑝𝑁

)𝑐𝑑𝑥  

Then the final form: 

 𝐼𝐼𝑅(𝑐)𝑁𝐻𝑊𝐼𝑊 =
1

1−𝑐
log [𝑅. 𝛤 (

1−𝑐(𝑝𝑁+1)

𝑝𝑁
)]  

𝑅 = ∑(−1)𝑛 (
𝑐
𝑛
)𝑀𝑐−𝑛𝑁𝑛

𝑐

𝑛=0

1

𝑝𝑁𝑞
−𝑐(𝑝𝑁+1)

𝑝𝑁
+

1
𝑝𝑁(2𝑖𝑐𝑏𝑁+2𝑐𝑏𝑁 + 𝑐𝑗 + 𝑐𝑘 − 𝑛𝑘 + 𝑛𝑧)

−𝑐(𝑝𝑁+1)
𝑝𝑁

+
1

𝑝𝑁

 

 

(23) 

4. Estimation 

4.1 maximum likelihood estimation 

The NHWIW distribution parameters are determine using maximum likelihood estimation approach. 

For sample 𝑥𝑁1
, 𝑥𝑁2

, … , 𝑥𝑁𝑚
 the random sample [22], [23], [24],  [25], [26] The NHWIW distribution 

NPDF is followed:  

𝐿(𝜃𝑁 , 𝑥𝑁𝑖
) = ∏ 𝑞𝑁𝑝𝑁𝑥𝑁𝑖

−(𝑝𝑁+1)
𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

[
𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

1−𝑒
−𝑞𝑁𝑥

𝑁𝑖

−𝑝𝑁
− 𝑙𝑜𝑔 (1 − 𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]   𝑚
𝑖=1   

     × [−𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

. 𝑙𝑜𝑔 (1 − 𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]
𝑏𝑁−1

 𝑒
(−𝑎𝑁[−𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

.𝑙𝑜𝑔(1−𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]

𝑏𝑁

)

 

we compute the log- likelihood: 

 
𝐿 = 𝑚𝑙𝑜𝑔(𝑞𝑁) + 𝑚𝑙𝑜𝑔(𝑝𝑁) − (𝑝𝑁 − 1)∑log(𝑥𝑁𝑖

)

𝑚

𝑖=1

− ∑𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

𝑚

𝑖=1

 (24) 
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  +∑log [
𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

1 − 𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁
− 𝑙𝑜𝑔 (1 − 𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]

𝑚

𝑖=1

+ (𝑏𝑁 − 1)∑log [−𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

. 𝑙𝑜𝑔 (1 − 𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]

𝑚

𝑖=1

  

    −𝑎𝑁 ∑[−𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

. 𝑙𝑜𝑔 (1 − 𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]
𝑏𝑁

𝑚

𝑖=1

 

 

 

4.2 Least square estimation 

The following formula can be used to estimate a parameters using the Least square estimation (LSE) 

method [27], [28]: 

 

𝜑(𝜃𝑁) = ∑

[
 
 
 

1 − 𝑒
(−𝑎𝑁[−𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

.𝑙𝑜𝑔(1−𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]

𝑏𝑁

)

−
1

𝑛 + 1

]
 
 
 
2

𝑚

𝑖=1

 (25) 

4.3 Weighted Least square estimation 

The following formula can be used to estimate a parameters using the Weighted Least square 

estimation (WLSE) method [29]: 

 

𝑊(𝜃𝑁) = ∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)

[
 
 
 

1 − 𝑒
(−𝑎𝑁[−𝑒

−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

.𝑙𝑜𝑔(1−𝑒
−𝑞𝑁𝑥𝑁𝑖

−𝑝𝑁

)]

𝑏𝑁

)

−
𝑖

𝑛+1

]
 
 
 
2

𝑚
𝑖=1   (26) 

Estimates of the parameters for the three previously described methods may be obtained by finding the 

partial derivative of four parameters and setting it to zero. Computer technologies such as the R language 

are used since it is difficult to find these values in numerical solutions. 

5. Simulation 

To demonstrate the efficieny of the estimation of NHWIW distribution, a Monte Carlo simulation is 

conducted for the three methods presented in a fourth section, where the sizes of generated samples were 

relied upon at n=50, 100, 150, and 200, to 1000 with the calculation of the values of mean square error 

(MSE), and its root (RMSE) [30], and the calculation of the bias in the estimated parameters, where Table 

3 shows the simulation values as follows: 

Table 3 : Monte Carlo simulations conducted for the NHWIW 

 

𝒓𝑵 = [0.4,1.4], 𝒖𝑵 = [0.5,1.5], 𝒃𝑵 = [0.7,1.7], 𝒄𝑵 = [0.8,1.8] 

N Est. 
Ess. 

Par. 
MLE LSE WLSE 

50 Mean 𝑎𝑁̂ [2.71415, 3.8807] [1.81833, 2.2308] [2.18454, 2.62480] 
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𝑏𝑁̂ [2.14886, 3.4619] [2.00585, 2.14894] [2.28999, 2.41772] 

𝑞𝑁̂ [1.98333, 2.030004] [1.68494, 2.65528] [1.49501, 2.36023] 

𝑝𝑁̂ [1.78887, 2.01288] [1.74966, 2.63342] [1.46794, 2.40224] 

MSE 

𝑎𝑁̂ [22.2105,25.1223] [1.40892, 1.91622] [2.77863, 3.67925] 

𝑏𝑁̂ [2.20026, 5.72680] [0.44948,1.0952] [0.98082,1.91795] 

𝑞𝑁̂ [3.88680, 5.14601] [0.96725, 2.38973] [1.04593, 2.03972] 

𝑝𝑁̂ [1.26702, 2.03484] [0.96801, 1.11202] [0.64689, 0.95739] 

RMSE 

𝑎𝑁̂ [4.7128,5.01222] [1.18698, 1.38427] [1.66692, 1.91813] 

𝑏𝑁̂ [1.48332, 2.3930] [0.67043,1.04654] [0.99036,1.38490] 

𝑞𝑁̂ [1.97149, 2.26848] [0.98348, 1.54587] [1.02270, 1.42818] 

𝑝𝑁̂ [1.12562, 1.42648] [0.98387, 1.05452] [0.80430, 0.97846] 

Bias 

𝑎𝑁̂ [1.314151, 1.9807] [0.33082,0.41833] [0.72480,0.78454] 

𝑏𝑁̂ [0.64886, 1.4619] [0.14894,0.50585] [0.41772,0.78999] 

𝑞𝑁̂ [0.26999,0.28333] [0.015057, 0.35528] [0.06023,0.20498] 

𝑝𝑁̂ [0.01112, 0.48711] [0.05033, 0.13342] [0.33205, 0.09775] 

100 

Mean 

𝑎𝑁̂ [2.31534, 3.4201] [1.85065, 2.25892] [1.96960, 2.52434] 

𝑏𝑁̂ [1.6431, 2.78082] [1.95885, 2.19012] [1.95962, 2.37243] 

𝑞𝑁̂ [2.04081,2.10196] [1.54758, 2.51858] [1.44971, 2.36524] 

𝑝𝑁̂ [1.80824, 2.09797] [1.62019, 2.56520] [1.48308, 2.427468] 

MSE 

𝑎𝑁̂ [6.10985, 16.8563] [1.28531, 1.92259] [1.61472, 2.84221] 

𝑏𝑁̂ [0.52321, 2.10325] [0.42942,0.75540] [0.67244, 0.73143] 

𝑞𝑁̂ [1.90643, 2.19297] [0.51869, 1.71932] [0.362008, 1.65003] 

𝑝𝑁̂ [0.70767,0.72883] [0.52677, 0.82273] [0.32772, 0.84436] 

RMSE 

𝑎𝑁̂ [2.47181, 4.10565] [1.13371, 1.38657] [1.27071, 1.68588] 

𝑏𝑁̂ [0.72333, 1.45026] [0.65530,0.86914] [0.82002, 0.85523] 

𝑞𝑁̂ [1.38073, 1.48086] [0.72020, 1.31123] [0.60167, 1.28453] 

𝑝𝑁̂ [0.84123,0.85372] [0.72579, 0.90704] [0.57247, 0.91889] 

Bias 

𝑎𝑁̂ [0.91534, 1.52011] [0.35892,0.45065] [0.56960, 0.62434] 

𝑏𝑁̂ [0.14319, 0.78082] [0.19012,0.45885] [0.37243,0.45962] 

𝑞𝑁̂ [0.25918,0.40196] [0.15241, 0.21858] [0.06524,0.25028] 
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𝑝𝑁̂ [0.00824, 0.40202] [0.065207,0.17980] [0.07253,0.31691] 

150 

Mean 

𝑎𝑁̂ [2.39295, 2.59663] [1.69799, 2.28928] [1.84874, 2.51742] 

𝑏𝑁̂ [1.48475, 2.38927] [1.84251, 2.22170] [1.82141, 2.36527] 

𝑞𝑁̂ [2.32242, 2.26305] [1.56125, 2.38488] [1.55411, 2.22098] 

𝑝𝑁̂ [1.83872, 2.33146] [1.62906, 2.47499] [1.61889, 2.31876] 

MSE 

𝑎𝑁̂ [5.19190,6.34498] [0.76663, 1.61336] [1.38675, 2.57476] 

𝑏𝑁̂ [0.36447, 0.76441] [0.41032,0.45602] [0.17093, 0.63993] 

𝑞𝑁̂ [1.85714,2.85060] [0.39942, 0.41032] [0.39838, 1.05506] 

𝑝𝑁̂ [0.30307, 0.49069] [0.29310, 1.01496] [0.40961, 0.52287] 

RMSE 

𝑎𝑁̂ [2.27857,2.51892] [0.87557, 1.27018] [0.27180, 1.60460] 

𝑏𝑁̂ [0.60371, 0.8743] [0.64056,0.67529] [0.63118, 0.79996] 

𝑞𝑁̂ [1.36277,1.68837] [0.63200, 1.00745] [0.64001, 1.02716] 

𝑝𝑁̂ [0.55052, 0.70049] [0.54139, 0.75893] [0.52135, 0.72310] 

Bias 

𝑎𝑁̂ [0.69663,0.99295] [0.38928,1.17760] [0.44874, 0.61742] 

𝑏𝑁̂ [0.015245, 0.38927] [0.22170,0.29799] [0.32141, 0.36527] 

𝑞𝑁̂ [0.036943,0.62242] [0.08488,0.34251] [0.07901,0.14588] 

𝑝𝑁̂ [0.03872, 0.16853] [0.025003,0.13874] [0.18110, 0.18123] 

200 

Mean 

𝑎𝑁̂ [2.56066, 2.69271] [1.65731, 2.22683] [1.74361, 2.39868] 

𝑏𝑁̂ [1.428845, 2.33717] [1.77586, 2.16486] [1.70362, 2.29352] 

𝑞𝑁̂ [2.19764,2.30402] [1.61052, 2.37936] [1.65621, 2.25097] 

𝑝𝑁̂ [1.77657, 2.30401] [1.68037, 2.492011] [1.66439, 2.36508] 

MSE 

𝑎𝑁̂ [6.98059,8.23299] [0.73184, 1.36073] [0.941745, 2.21622] 

𝑏𝑁̂ [0.25652, 0.56396] [0.31173,0.35832] [0.28724, 0.46309] 

𝑞𝑁̂ [1.12979,2.25599] [0.351277, 0.86185] [0.39563, 1.00733] 

𝑝𝑁̂ [0.15658, 0.33635] [0.29343, 0.49330] [0.19297, 0.43221] 

RMSE 

𝑎𝑁̂ [2.64208,2.86931] [0.85547, 1.16650] [0.97043, 1.48869] 

𝑏𝑁̂ [0.506478, 0.75097] [0.55833,0.59860] [0.53595, 0.68050] 

𝑞𝑁̂ [1.06291,1.50199] [0.59268, 0.92836] [0.62899, 1.00366] 

𝑝𝑁̂ [0.39571, 0.57996] [0.54169, 0.70235] [0.43929, 0.65742] 

Bias 𝑎𝑁̂ [0.79271,1.16066] [0.25731, 0.32683] [0.34361, 0.49868] 
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𝑏𝑁̂ [0.071154, 0.33717] [0.16486,0.27586] [0.20362, 0.29352] 

𝑞𝑁̂ [0.10235,0.60402] [0.07936,0.08947] [0.043784, 0.04902] 

𝑝𝑁̂ [0.023423, 0.19598] [0.00798,0.11962] [0.13491,0.13560] 

Table 3 shows the lowest MSE and RMSE values for the MLE method, indicating that it is the 

most accurate. Bias is low in all methods, reflecting the quality of the estimates. MLE (Maximum 

Likelihood Estimation) showed superior performance, especially with large sample sizes, making it the 

best fit for the distribution. LSE and WLSE perform well with small sample sizes but are less accurate as 

the size increases. 

6. Application  

To demonstrate the extent of the quality of the distribution and its efficiency in practical 

applications, the practical aspect is an important aspect to show this, as in this part a practical applications 

is conducted on real neutrosophic data that is used [31], with a comparison of the results obtained between 

the proposed distribution and six other distribution represented by: 

 Neutrosophic beta inverse Wiebull (NBeIW) 

 Neutrosophic Kumaraswamy inverse Wiebull (NKuIW) 

 Neutrosophic Exponeted generalized inverse Wiebull (NEGIW) 

 Neutrosophic log-Gamma inverse Wiebull (NLGamIW) 

 Neutrosophic Gompertz inverse Wiebull (NGoIW) 

 Neutrosophic inverse Wiebull (NIW) 

This comparision required the use of four information criteria, which are (AIC [19], CAIC [32], 

[33], HQIC [34], [35], , and BIC [36]) in addition to four statistical measures, which are (Kolmogorov-

Smirnov (KS), Anderson- Darling (A), Cramér-von Mises (W), and p-value [37], [38]). 

Data set-1 

     The first represented by mortality data for children under five years of age [31]. 
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The results of the criteria for the distributions were displayed in Table 4, while Table 5 expressed 

the value of the statistical measures, while Table 6 displayed the values of the estimated parameters for 

each distribution. 

Table 4. results of the criteria for the distributions 
Dist. -2L AIC CAIC BIC HQIC 

HWIW [85.40969,85.5326] [178.8194,179.06] [180.7241,180.97] [183.851,184.097] [180.268,180.514] 

BeIW [86.0416, 87.6206] [180.089, 183.302] [181.994, 185.207] [185.122, 188.334] [181.538, 184.751] 

KuIW [86.1110, 86.5381] [180.234, 181.085] [182.139, 182.990] [185.267, 186.118] [181.683, 182.535] 

EGIW [86.2713,86.31197] [180.564,180.649] [182.469,182.554] [185.597,185.681] [182.014,182.098] 

LGamIW [85.63031,85.8919] [179.260,179.785] [181.165,181.690] [184.293,184.818] [180.709,181.235] 

GoIW [87.0561, 87.2476] [182.112, 182.495] [184.017, 184.400] [187.144, 187.527] [183.561, 183.944] 

IW [96.1148, 104.916] [196.24, 213.9324] [196.761, 214.454] [198.756, 216.448] [196.9645, 214.65] 

From Table 4, NHWIW achieved the lowest values for most of the criteria, indicating its high fit 

to the data. The IW distribution was the least efficient due to its high values, as low values of the criteria 

enhance the stability of the distribution when comparing models with different complexities . 

Table 5. value of the statistical measures 
Dist. W A K-S p-value 

HWIW [0.03774283,0.0473640] [0.313303,0.341763] [0.103911, 0.106321] [0.900544,0.9142441] 

BeIW [0.04349193,0.0582771] [0.3464307,0.40208] [0.088246, 0.119375] [0.8107124,0.9765447] 

KuIW [0.04234476,0.0551776] [0.341253,0.386771] [0.081400, 0.094516] [0.9572919,0.9896749] 

EGIW [0.04774075,0.0614708] [0.370513,0.420625] [0.082911, 0.090155] [0.9714649,0.9874063] 
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LGamIW [9.373411,9.426508] [52.44084, 52.46839] [0.9483765, 0.94545] 5.551115e-16 

GoIW [0.0627775,0.06469447] [0.461921, 0.464890] [0.12449, 0.1460138] [0.5858848,0.7699224] 

IW [0.04225913,0.0575322] [0.339643,0.397695] [0.227421, 0.364774] [0.001313552,0.1155558] 

Table 5 shows that NHWIW achieved the highest p-value and lowest W and A values, reflecting 

its high fit to the data. Other distributions showed poorer performance compared to NHWIW . 

Table 6. Estimator value interval for parameters by MLE 
Dist. 𝒂̂𝑵 𝒃̂𝑵 𝒒̂𝑵 𝒑̂𝑵 

HWIW [0.013462, 0.0280360] [3.3452479,3.5492839] [7.5562016, 12.242277] [1.918304,1.948398] 

BeIW [5.941547,6.880572] [3.479567, 3.568686] [6.136480,7.531162] [0.966692,1.129877] 

K

uIW 
[5.85491, 5.858095] [4.048258,4.141243] [6.026946, 6.382458] 

[1.111050,1.119379] 

EGIW [3.8376168, 4.5794689] [6.6182216, 7.6331922] [7.205414,7.2723604] [0.789913,0.848330] 

LGamIW [7.337486, 8.415236] [5.380997, 6.665243] [7.4194373, 8.495675] [1.17855,1.194137] 

GoIW [0.006215729,0.00781413] [1.4543039, 1.4894439] [1.9634420,1.9943284] [1.486703,1.493761] 

IW --- --- [6.1610960,13.242297] [0.8713852,1.14196] 

Table 6 shows the estimated intervals of the main parameters of the NHWIW distribution compared 

to other distributions (such as BeIW, KuIW, etc.) using the maximum likelihood estimation (MLE) method 

for the first dataset. The NHWIW distribution showed narrow intervals of the parameters, indicating the 

stability of the estimates, while other distributions such as BeIW and KuIW showed greater variation in 

the intervals of the parameters, which may indicate their poor efficiency compared to NHWIW. 

  

(a) (b) 

Figure 3: (a) Fitting pdfs NHWIW with histogram data set, (b) Empirical Fitted CDFs 

NHWIW with data set 

Figure 3 (a) shows how well the probability density function (PDF) of the NHWIW distribution 

matches the actual data for the first set. The distribution shows a strong fit with the structural distribution 

of the data, with the curve following the shape of the experimental data. This indicates the ability of 

NHWIW to accurately and flexibly represent real data. Figure 3 (b) shows the empirical CDF compared 

with the theoretical CDF. The strong fit between the distributions reflects the efficiency of NHWIW in 

representing the cumulative probability of the data. 

 

 

 

 

 

Data set-2 
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 The second is COVID-19 in Netherlands for thirty days [39] 
Var N Mean SD Median Trimmed Mad Min Max Range SK KU Se 
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Table 7. results of the criteria for the distributions 
Dist. -2L AIC CAIC BIC HQIC 

HWIW [76.43589,77.09943] [160.8718, 162.1989] [162.4718,163.7989] [166.4766,167.8036] [162.6648,163.9919] 

BeIW [76.48142,77.32048] [160.9628, 162.641] [162.5628,164.241] [166.5676,168.2457] [162.7559,164.434] 

KuIW [76.59179, 77.27442] [161.1836, 162.5488] [162.7836,164.1488] [166.7884,168.1536] [162.9766,164.3419] 

EGIW [78.25885, 79.37512] [164.5248, 166.7519] [166.1248,168.3519] [170.1296,172.3567] [166.3179,168.545] 

LGamIW [76.56406, 77.31349] [161.1281, 162.627] [162.7281,164.227] [166.7329,168.2318] [162.9211,164.42] 

GoIW [77.94244, 79.25779] [163.9185, 166.5239] [165.5185,168.1239] [169.5233,172.1287] [165.7115,168.3169] 

IW [80.90795, 81.86503] [165.8159, 167.7301] [166.2603,168.1745] [168.6183,170.5325] [166.7124,168.6266] 

Table 7 compares NHWIW with other distributions using informative criteria such as AIC, BIC, 

CAIC, and HQIC for the second dataset. NHWIW distribution had the lowest values for all criteria 

compared to other distributions. Other distributions, such as IW and GoIW, showed high values, indicating 

their poor performance in fitting the data. 

Table 8. value of the statistical measures 
Dist. W A K-S p-value 

HWIW [0.0233792, 0.0241559] [0.1664448, 0.1756536] [0.070432, 0.0770078] [0.9881955, 0.99588] 

BeIW [0.02499, 0.02863132] [0.185047, 0.2137449] [0.08221554,0.085797] [0.96637, 0.977128] 

KuIW [0.0217852, 0.0257614] [0.1728076, 0.1938708] [0.0685944, 0.076441] [0.9891058,0.9971004] 

EGIW [0.0612384, 0.082723] [0.4535322, 0.57210] [0.1106459, 0.114588] [0.784162,0.8173854] 

LGamIW [9.976712,10.01212] [60.25735,60.30363] [0.9854649, 0.987072] 1.221245e-15 

GoIW [0.0474965, 0.0719870] [0.3674051, 0.5081394] [0.0990987, 0.105585] [0.8571036,0.9018158] 

IW [0.1411036, 0.1590753] [0.940501, 1.032139] [0.1517456, 0.153257] [0.4380138,0.4503734] 

Table 8 NHWIW had the highest p-value and the lowest values for W, A, and K-S, indicating that 

this distribution is superior to other distributions and provides an excellent fit to the data and there is no 

evidence to reject the hypothesis of the distribution. Distributions such as IW showed high values for the 

criteria, reflecting their poor representation of the data. 

Table 9. Estimator value interval for parameters by MLE 
Dist. 𝒂̂𝑵 𝒃̂𝑵 𝒒̂𝑵 𝒑̂𝑵 

HWIW [5.837801, 6.1923656] [4.02133, 4.2564547] [0.8979603,0.91083] [0.3596752,0.37002] 

BeIW [0.326699, 0.5555232] [23.3992253,26.28143] [13.330017,19.726555] [0.642861,0.746774] 

KuIW [3.5882782,9.1795205] [65.592337, 74.372615] [1.0179446, 2.7114185] [0.421744,0.426545] 

EGIW [4.458458,5.3694787] [2.5368242, 2.864744] [3.8798198,4.1462443] [0.652446,0.696044] 

LGamIW [0.4306123, 0.5999024] [21.714107, 25.562351] [12.796964,15.607732] [0.624186,0.698871] 

GoIW [7.8853573,8.9050606] [0.9466685, 1.2100697] [7.3119639,8.3552368] [0.706303,0.712820] 

IW --- --- [7.869781, 8.576315] [1.553003, 1.564124] 

Table 9 NHWIW distribution showed more accurate and stable estimation intervals compared to 

other distributions. Distributions such as GoIW and BeIW showed wide variations in estimates. 
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(a) (b) 

Figure 4: (a) Fitting pdfs NHWIW with histogram data set2, (b) Empirical Fitted CDFs 

NHWIW with data set2 

Figure 4 (a) shows how well the PDF of the NHWIW distribution fits the real data of the second 

group (COVID-19 data). The curve shows that NHWIW captures the main characteristics of the data. The 

good fit indicates the flexibility of the distribution in dealing with different types of data. Figure 4 (b) 

compares the empirical CDF with the theoretical NHWIW CDF for the second group of data. The close 

fit between the two curves reflects the accuracy of NHWIW in predicting the cumulative probabilities of 

the data. This enhances the reliability of the distribution and its relevance to real-world data such as 

COVID-19. 

Conclusion 

The NHWIW distribution showed high efficiency in representing real data compared to 6 other 

distributions. NHWIW outperformed in information criteria (AIC, BIC, CAIC, HQIC) and statistical 

criteria (K-S, W, A, p-value). The distribution has great flexibility that enables it to adapt to uncertain or 

ambiguous data using neutrosophic parameters. The maximum likelihood method (MLE) was the most 

accurate in estimating the parameters, indicating the stability of the model. Simulations proved that 

NHWIW provides accurate estimates even with small or medium sample sizes. The distribution is suitable 

for representing real data such as under-five mortality and COVID-19 data in the Netherlands. NHWIW 

showed high agreement with experimental data as shown in the figures. NHWIW represents an important 

step in applying neutrosophic logic in statistical modeling and bridges the research gap in integrating 

ambiguous data with complex mathematical distributions. 
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