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Abstract:

This study is concerned with finding a statistical distribution that deals with a Neutrosophic random
variable and Neutrosophic parameters called Neutrosophic Hybrid Weibull Inverse Weibull (NHWIW)
distribution. The basic functions of proposed distribution are found, as well as many statistical properties
of distribution with an estimation of the model parameters in three different techniques, with a Monte
Carlo simulation to determine the estimation efficiency of NHWIW distribution, with a comparison with
three measures to determine the best method for estimation. A practical application is also conducted on
two types of Neutrosophic real data, the first represented by mortality data for children under five years of
age, and the second is COVID-19 in Netherlands for thirty days, where the analysis efficiency of the
NHWIW distribution is determined by comparing it with six other distributions using 4 information criteria
and 4 statistical measures, which showed the efficiency and flexibility of NHWIW distribution.

Keywords: HWG-family, Neutrosophic data, Bias, Cramér-von Mises, and flexibility.

1. Introduction:

Probability distributions are a fundamental tool in statistical modeling used to describe and analyze
various phenomena in many fields. One of the most prominent methods recently developed to expand the
scope of basic distributions is the T-X method, which provides a flexible framework for creating new
distributions with improved mathematical properties, making them more accurate in representing real-
world data. The methods is based on forming a family of complex distributions using transformation
functions, which contributes to enhancing the flexibility and ability to deal with complex properties, such
as heterogeneous or asymmetrically distributed data [1]. Examples of this method include: BINIEE-X
family [2], NOGEE—G family [3], WEE-X Family [4], OLG family [5], NGOF-G Family [6], EOIW-G
Family [7], GOM-G family [8], and HOE-® family [9]. This study based on HWG family which was has
a CDF function by form [10]:

Fyws(x,a,b,{) = 1 — e(—a[—Q(x;e).log(1—9(x;£))]b)’ x>0,ab>0 @
And PDF function by form:

_ _ G(x;€) _

fHWG(xJ a, b; Z) =ab g(xr 8) 1 _g(x, 8) log(l g(xr 8))

(2)
X [=G(x; ). log(1 — G(x; S))]b_le(—a[—g(x;&').log(1—g(x,g))]b)

Where G(x;¢€), and g(x;e) are CDF and PDF functions for any baseline distribution and a, b > 0 are
shapes parameters for HWG family.

On other hand, the Neutrosophic logic (N.L) is a recent development in the field of fuzzy and
uncertain data analysis. This logic aims to address ambiguity and uncertainty in data by introducing three
main dimensions: Truth (T), falsehood (F), and indeterminacy (1). this framework provides an effective
way to model data that cannot be conclusively characterized using traditional methods. There are two types
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of N.L: the traditional method, in which the data is divided into three parts and then dealt with by using,
for example, the triangular function, in which the peaks represent the T values and the troughs represent
F values and what is an between represents | values, or trapezoidal function in the same manner. As for
the second method, which depends on the values of intervals and contains all parts of N.L, which called
the direct method, and it’s the method used in forming the proposed distribution.

Focuses on finding a statistical distribution that deals with a Neutrosophic variables and
parameters. The main gap is the lack of previous research that integrates Neutrosophic data with complex
distributions such as a distribution based on a hybrid family of Weibull distribution and a hybrid integral
limit. Existing studies often focus on traditional data or on specific distributions without considering
Neutrosophic data of an uncertain or ambiguous nature. The aim of the study is to develop a " Neutrosophic
Hybrid Weibull Inverse Weibull" and test its efficiency and flexibility on real Neutrosophic data using
multiple estimation methods, and compare with other distributions to determine the efficiency and
flexibility in dealing with Neutrosophic data.

2. Neutrosophic Hybrid Weibull Inverse Weibull (NHWIW) distribution
Let X be a random variable, then the CDF and PDF functions for Inverse Weibull distribution has a forms
[11]:

Gx;q,p) =" qpx>0 ©)

g(x;q,p) = qpx~®+De=ax? g p x>0 (4)

Where g, p are shape parameters for Inverse Weibull distribution.
To get the CDF function for Hybrid Weibull Inverse Weibull we combine equation (1) with
equation (3) by form:
_gx—P —gx—P\1?
F(X) _1_ e(—a[—e q .log(l—e q )] )) xab, ap > 0 (5)
The PDF function for Hybrid Weibull Inverse Weibull (HWIW) we combine equation (2) with
equation (3) and (4) to get it by form:

eax P

f(x) =ab QPX_(pH)e_qx_p [1—e_qx‘l’ - lOg(l - e‘qx_p)]

(6)

- —p\1D
X [—e_qx_p. lOg(l _ e_qx—p)]b—le(—a[_e—qx p.log(l—e—qx D)] )

In order to integrate the HWIW distribution with N.L, the random variable and parameters of
HWIW distribution are converted to Neutrosophic random variable and Neutrosophic parameters as
follows:

Let Xy =d +tl, tI € [X,,Xy], where X, X, are lower and upper values of the neutrosophic
random variable having determined part d and indeterminate part tI, tI € [I;,I;]. Note that the NHWIW
distribution reduces to classical HWIW distribution when X; = X;;. The neutrosophic cumulative density
function (NCDF) of NHWIW has a Neutrosophic shape parameters ay € [a,, ay], by € [by, by], gy €

[q., qu], and py € [pL, py], has the form:
bN)
, (7)

<—aN[—e_qu;IpN.log(l—e_qu;le>
F(xy)=1-e¢

Xy an, by, qn, oy > 0

To obtain the nature of NCDF, the function is plotted with different intervals of parameters and in
2-dimentional and 3-dimensional forms as follows:
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Figure 1. plot of NCDF for NHWIW distribution

And the probability density function (NCDF) of NHWIW has a form:

-p
e CINxN N

(p +1) _ -PN _ -PN
o) = aupue ey —log (1 - e )

X [—e"qul:le. log (1 (8)

b
. .~PN _. .~PN\]°N
-pn\1bN—1 (—aN[—e IN*N .log<1—e IN*N >] )
_ emaN%y )] e

To obtain the nature of NCDF, the function is plotted with different intervals of parameters and in
2-dimentional and 3-dimensional forms as follows:
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Figure 2. plot of NPDF for NHWIW distribution

While the survival function foe NHWIW distribution given by formula [12]:
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SCxy) = e(—aN[—e_qNX;/pN.l0g<1_e—qu;,pN>]bN> ©

And the hazard function has a formula:
e_qu;]pN

- _ -PN _ —-PN
quNxN(pN+1)e aANXy lw — log (1 — e—aN%y )]
—e N

[_e_qu;,pN. log (1 _ e_qu;’pN)]l—bN

(10)

h(xy) =

3. Properties for NHWIW distribution
In this section we will prove some statistical properties for NHWIW distribution, and show what
changing of classical IW distribution.

3.1 NCDF and NPDF expansion

Due to the difficulty of NCDF and NPDF functions in equations (7) and (8) respectively, these
functions are simplified in order to simplify the proof of NHWIW distribution properties. This is done
using binomial expansion, the exponential function expansion, and the logarithm expansion. Therefore,
the simplified NCDF function is obtained as follows:

Flxy) = 1—1 (e~ (12)

T ()N _ ._1wj m(by+1D)—j
Whel’e l/) - Zi=j=OTaN dib[v,j’ and dibN,j —] mle

By same way we can expansion NPDF function to get a form:
Flxy) = MX;I(pNH)e—(21bN+sz+j+k)qu,]pN

forj=z0andd;,o=1

_ 12
_ le;(mvﬂ)e—(zth+2bN+j+z)quNpN (12)
o (—1)iFbNFON-1H R
Where M = Y72 k=0 " an'"" dipy,by-1,j Bv ANDN
_ . (_1)i+ibN+bN—1+j i+1
And N =372, r an' " dipy,by-1,j41,2 by AnDn
_ . —1vyJ  2m—j _ _
As di, =z m=1"Tmr1 forz>=0 andd;o=1 and Aipy,by-1,j =

1w m(iby+bn)—Jj

m=1"" 1 forj=0 anddp,,py-10=1

3.2 Moment
Let X, be any Neutrosophic random variable, then the nt* moment for NHWIW distribution is given
by form [13], [14], [15], [16]

tn = E(XN)nawiw = j xy f(xn)dxy (13)

By putting equation (12) in equation (13) we have got a form:
oo - ; ; -p oo — : : -
w, =M fo XII\II (pN+1)e—(21bN+sz+]+k)quN N Nfo xlr\} (pzv+1)e—(Zle+2bN+J+Z)quNp” dxy

To get a final form:

r(5e)

_ PN M N

Un = PN PN T—PN (14)
pnan PN | (2iby+2by+j+k) PN (2iby+2by+j+2z) PN

The first four moments are found by substituting the value of n and as follows:
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1—pN
_ I PN ) M N
M1 1-PN T-pN — 1-PN
pnan PN LQ2iby+2by+j+k) PN (2ibn+2by+j+z) PN |
2-PN
_ I PN ) M N
Hz = 2-PN 2-pN 2-PN
pnan PN LQ2ibyy+2by+j+k) PN (2ibn+2by+j+z) PN |
3-PN
_ I PN ) M N
Mz = 3-PN 3-pN 3-PN
pnan PN LQ2ibyy2by+j+k) PN (2ibn+2by+j+z) PN |
4-PN
_ I PN ) M N
Ha = 4PN 4=pN 1I—pN
pnan PN L(2ibni2by+j+k) PN (2ibn+2by+j+z) PN |

From it, we can obtain the skewness and Kurtosis of NHWIW distribution respectively as follows

[16]:
3-DN [
F —iy
( PN ) M
3-PN 3-PN 3-PN
SK _ pnany PN [(zibyi2by+j+k) PN (2ibyy2by+j+2z) PN
NHWIW — 3
2—pN 2
=N [ M N
2-PN 2-PN 2-PN
pNaN PN |(2ibyy2by+j+k) PN (2ibyy2by+j+z) PN
a-ppny |
F( PN ) M N
4PN 4-PN 4-PN
KU _ pnan PN |(zibyy2by+j+k) PN (2ibyy2by+j+z) PN _3
NHWIW — 2o [ 2
PN
F( PN ) M N
2-PN 2-PN 2-pN
pNaN PN [(2ibyy2by+j+k) PN (2ibyi2by+j+z) PN

To know the change in the moments of NHWIW distribution with change in intervals of
Neutrosophic parameters, table 1 shows a set of moments with variance, skewness, and Kurtosis as

(15)

(16)

17)

(18)

(19)

(20)

follows:
Table. 7 some intervals of moments for NHWIW
ay | by | qn | Dn By B2y B3y Bay a3 Sy Ky
_!: [2.146064, | [4.723157, | [10.64869, | [24.5692,3 | [0.117566, | [1.037403, | [1.101352,
— 2 2.857927] | 10.57421] | 52.02946] | 54.4007] 2.406463] | 1.513134] | 3.169558]
>~ |~
!\) —
= S [2.0717, [4.391856, | [9.518114, | [21.06914, | [0.099915, | [1.034139, | [1.092322,
. x 2.593549] | 8.343002] | 33.94803] | 179.7407] | 1.616506] | 1.408741] 2.58227]
& | o —
N | .
22 S [2.077192, | [4.406707, | [9.540035, | [21.05919, | [0.09198,1 | [1.031285, | [1.084459,
= g 2.651157] | 8.434903] | 32.68622] | 157.4864] .40627] 1.334273] | 2.213517]
‘:oj eed
!\) Lo |
»
= _!; [2.014016, | [4.135742, | [8.652692, | [18.43118, | [0.079482, | [1.028777, | [1.077572,
z 2.458261] | 7.066473] | 24.02667] | 98.13544] | 1.023426] | 1.279056] | 1.965262]
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o | [2.047589, | [4.257436, | [8.983496, | [19.22557, | [0.064815, | [1.022641, | [1.060677,
— x 2.552581] | 7.198049] | 22.42205] | 77.17473] | 0.682379] | 1.161056] | 1.489517]
o —_
™
o —
= | 5 | [1.991347, | [4.022199, | [8.235853, | [17.08652, | [0.056736, | [1.020971, | [1.056152,
= N | 2.400354] | 6.28886] | 17.98276] | 56.13042] | 0.527161] | 1.140246] | 1.419235]
N
(o] —
= | [1.966076, | [3.916789, | [7.902665, | [16.14081, | [0.051334, | [1.019479, | [1.052119,
—_ ':’l 2.347823] | 5.956809] | 16.33094] | 48.38371] | 0.444536] | 1.123287] | 1.363552]
= —_—
o
N
© —
= | & | [1.894836, | [3.634783, | [7.055468, | [13.85253, | [0.04438,0 | [1.018141, | [1.048509,
; 2.153215] | 5.001715] | 12.54589] | 34.02125] .36538] 1.121561] | 1.359917]

3.3 Moment Generating Function
Let X, be any Neutrosophic random variable, then the Moment Generating Function (MGF) for

NHWIW distribution is given by form [17] , [18] :
M(©) = BE™) = [ e fCun)dx

M, (t) = XrZo

oo

n-py
tr Iy

M

N

From equatioﬁ (14) and using exponential expansion we get a final form:

PN
pngn PN

r!

(2ibn4+2by+j+k) PN

PN

3.4 Quantile function of NHWIW distribution
The Quantile function has a major role in application of Monte Carlo simulation and represents the

n=rn

(2ibn4+2by+j+2z) PN

(21)

Table 1 presents the different values of statistical moments (mean, variance, skewness, kurtosis) for
the NHWIW distribution with changes in the upper and lower boundary parameters of the unspecified
variables. The values show that the moments of the distribution change significantly when the boundaries
are modified. Skewness and kurtosis are used to assess the shape of the distribution. The mean expresses
the expected center of the distribution and changes with the variation of the ambiguous parameters. The
variance. High values indicate that the distribution can handle disparate and scattered data, while it
indicates the level of concentration in the values. Low values indicate that the distribution can handle data
with a wide range. Low values indicate that the distribution is balanced, which enhances its suitability to
realistic data.

inverse of NCDF function Q (u) = F~1(w) [19], which is obtained for the NHWIW distribution as follows:

Qw =

an

intervals as follow:

__ e |l ES
log[®+w_1(®)e@q 0 = [—log(l—u)]b,\,
) aN

(22)

Table 2 expresses a set of intervals of the Quintile function values of NHWIW for different

Table 2: Quintile function values of NHWIW for different intervals
(ay, by, qn, Pn)

[0.4,0.8],[ 1.1, 1.9]
[0.4,1.4],[ 1.2, 1.7]

[0.6, 1.6],[1, 1.5]
[0.4, 1.4],[1, 1.5]

[0.5,1.5],[ 1.1.1,6]
[0.51.5],[ 1.1,1.6]

[1.2,1.7],[1,1.5]
[0.8,1.8],[ 1.2,1.7]

[1.11.7][1.9,19]
[0.7,1.7],[1.5,2]

0.1

[0.5880204,1.50829]

[0.407121, 1.194348]

[0.622559, 1.33252]

[0.669702, 3.3304]

[0.9420654, 3.28916]

0.2

[0.8511505,1.75326]

[0.6020268, 1.40746]

[0.898051, 1.54565]

[0.86103, 1.38635]

[1.1027903, 1.56190]

0.3

[1.1616532, 1.95887]

[0.8308531, 1.59006]

[1.214072, 1.72384]

[1.047516, 1.5928]

[1.2370894, 1.68682]
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0.4

[1.5748618, 2.15671]

[1.1324191, 1.76916]

[1.621220, 1.89484]

[1.253187, 1.7644]

[1.3657090, 1.80121]

0.5

[2.1794962, 2.36248]

[1.5680264, 1.95911]

[2.07237,2.194616]

[1.499006, 1.9283]

[1.4988826, 1.91481]

0.6 | [2.590992,3.165274] | [2.174631,2.267291] | [2.26927,3.086756] | [1.816802, 2.0979] | [1.6459544, 2.03529]
0.7 | [2.863979,5.033473] | [2.43857,3.5705340] | [2.50435,4.680039] | [2.270645, 2.2853] | [1.8204959, 2.17226]
0.8 | [3.226530,9.576866] | [2.800418,6.695981] | [2.816750,8.25737] [2.50855,3.02963] | [2.0505678, 2.34410]
0.9 | [3.821119,28.62166] | [3.423055,19.87242] | [3.33042,21.51546] [2.80425,4.80523] | [2.4236659, 2.60524]

Table 2 presents the values of the quantile function for the NHWIW distribution for different
probability intervals. The different values reflect changes in the range of the data distribution based on the
probability. Narrower intervals show greater accuracy in representing the data, while wider intervals
reflect greater flexibility. Small values indicate the distribution’s ability to provide accurate boundaries for

the intervals.

3.5 Renyi entropy

The Renyi entropy is given by form [20], [21] :

1

IR(npwiw = 1—¢c

1
IR nawiw = 1

log [ fGxw)edx
0

Nx;(p,vﬂ)e-(zibN+2bN+j+z)qu;,”N)cdx

Then the final form:

Ir(npwiw = 1—;10g [R.I" (M)]

R = Z{](_l)n (fl) ME—nNT

4. Estimation

PN

o' - +1) —(2i i —PN
log fo (MxN(pN )e (Zle+2bN+]+k)quN _

1

—clpn+1), 1

pnq PN

4.1 maximum likelihood estimation
The NHWIW distribution parameters are determine using maximum likelihood estimation approach.

For sample xy, Xy, -,

NPDF is followed:

L(QN: XNi) = H?;1 qNDPNX

|-

-p
_quNi

PN
i

~(pN+1)  —ANXy
N; e

N
.log(l—e

we compute the log- likelihood:

m m
L =mlog(qy) +mlog(py) — (py — 1) Z log(xn,) — Z anxy N
i=1 i=1

_quNi

~-PN

e_quNi
———~ —log

—e

_quNi

360

—e

—c(pN+1)+ 1

PN(2ichy,2chy + ¢j + ck —nk +nz) PN PN

(23)

Xn,, the random sample [22], [23], [24], [25], [26] The NHWIW distribution

1- e_qu;’li’N )]

_ _ b
PN PN\1°N
Xy —anxy,
NEN; .log(l—e NEN; )] )

(24)




PN
m _quNl

e i _ -PN
+Zlog W—log (1_8 aNXy, )
e N;

i=1 1 -

m
_ -PN _ -PN
+ (by — 1)2 log [—e NI log (1 — e NN )]
i=1

& Y —qnx PN by
—aNZ[—e NEN; .log(l—e NN )]

i=1

4.2 Least square estimation
The following formula can be used to estimate a parameters using the Least square estimation (LSE)
method [27], [28]:
by
I

n | ( ]
¢(9N):Z|l1—e Tl+1J|

-PN -pN
—AqNXp. —ANXy.
-e Ny .log(l—e N; )

(25)

4.3 Weighted Least square estimation
The following formula can be used to estimate a parameters using the Weighted Least square

estimation (WLSE) method [29]:
2
[ —ay —e_qu;’zi]N.log<1—e_qu;’li)N) by ]
V(y) = S D)4, __tl (28

=1 i(n—-i+1) n+1J

Estimates of the parameters for the three previously described methods may be obtained by finding the
partial derivative of four parameters and setting it to zero. Computer technologies such as the R language
are used since it is difficult to find these values in numerical solutions.

5. Simulation

To demonstrate the efficieny of the estimation of NHWIW distribution, a Monte Carlo simulation is
conducted for the three methods presented in a fourth section, where the sizes of generated samples were
relied upon at n=50, 100, 150, and 200, to 1000 with the calculation of the values of mean square error
(MSE), and its root (RMSE) [30], and the calculation of the bias in the estimated parameters, where Table
3 shows the simulation values as follows:

Table 3 : Monte Carlo simulations conducted for the NHWIW

ry =[0414], uy=[0515], by=[0717, cy=1[0818]

N | Est. | B MLE LSE WLSE
Par.
50 | Mean | ay [2.71415, 3.8807] [1.81833, 2.2308] [2.18454, 2.62480]
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by [2.14886, 3.4619] [2.00585, 2.14894] [2.28999, 2.41772]
qn [1.98333, 2.030004] [1.68494, 2.65528] [1.49501, 2.36023]
Dn [1.78887, 2.01288] [1.74966, 2.63342] [1.46794, 2.40224]
ay [22.2105,25.1223] [1.40892, 1.91622] [2.77863, 3.67925]
by [2.20026, 5.72680] [0.44948,1.0952] [0.98082,1.91795]
Ve qn [3.88680, 5.14601] [0.96725, 2.38973] [1.04593, 2.03972]
DN [1.26702, 2.03484] [0.96801, 1.11202] [0.64689, 0.95739]
an [4.7128,5.01222] [1.18698, 1.38427] [1.66692, 1.91813]
by [1.48332, 2.3930] [0.67043,1.04654] [0.99036,1.38490]
RMSE
an [1.97149, 2.26848] [0.98348, 1.54587] [1.02270, 1.42818]
Pn [1.12562, 1.42648] [0.98387, 1.05452] [0.80430, 0.97846]
ay [1.314151, 1.9807] [0.33082,0.41833] [0.72480,0.78454]
. by [0.64886, 1.4619] [0.14894,0.50585] [0.41772,0.78999]
o qn [0.26999,0.28333] [0.015057, 0.35528] [0.06023,0.20498]
PN [0.01112, 0.48711] [0.05033, 0.13342] [0.33205, 0.09775]
an [2.31534, 3.4201] [1.85065, 2.25892] [1.96960, 2.52434]
by [1.6431, 2.78082] [1.95885, 2.19012] [1.95962, 2.37243]
Mean
an [2.04081,2.10196] [1.54758, 2.51858] [1.44971, 2.36524]
Py [1.80824, 2.09797] [1.62019, 2.56520] [1.48308, 2.427468]
an [6.10985, 16.8563] [1.28531, 1.92259] [1.61472, 2.84221]
by [0.52321, 2.10325] [0.42942,0.75540] [0.67244, 0.73143]
MSE qn [1.90643, 2.19297] [0.51869, 1.71932] [0.362008, 1.65003]
100 Pn [0.70767,0.72883] [0.52677, 0.82273] [0.32772, 0.84436]
ay [2.47181, 4.10565] [1.13371, 1.38657] [1.27071, 1.68588]
by [0.72333, 1.45026] [0.65530,0.86914] [0.82002, 0.85523]
RMSE
an [1.38073, 1.48086] [0.72020, 1.31123] [0.60167, 1.28453]
Dn [0.84123,0.85372] [0.72579, 0.90704] [0.57247, 0.91889]
ay [0.91534, 1.52011] [0.35892,0.45065] [0.56960, 0.62434]
Bias by [0.14319, 0.78082] [0.19012,0.45885] [0.37243,0.45962]
qn [0.25918,0.40196] [0.15241, 0.21858] [0.06524,0.25028]
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DN [0.00824, 0.40202] [0.065207,0.17980] [0.07253,0.31691]
an [2.39295, 2.59663] [1.69799, 2.28928] [1.84874, 2.51742]
by [1.48475, 2.38927] [1.84251, 2.22170] [1.82141, 2.36527]
Mean
an [2.32242, 2.26305] [1.56125, 2.38488] [1.55411, 2.22098]
Pr [1.83872, 2.33146] [1.62906, 2.47499] [1.61889, 2.31876]
ay [5.19190,6.34498] [0.76663, 1.61336] [1.38675, 2.57476]
by [0.36447, 0.76441] [0.41032,0.45602] [0.17093, 0.63993]
Mo qn [1.85714,2.85060] [0.39942, 0.41032] [0.39838, 1.05506]
Pn [0.30307, 0.49069] [0.29310, 1.01496] [0.40961, 0.52287]
0 an [2.27857,2.51892] [0.87557, 1.27018] [0.27180, 1.60460]
by [0.60371, 0.8743] [0.64056,0.67529] [0.63118, 0.79996]
RMSE
an [1.36277,1.68837] [0.63200, 1.00745] [0.64001, 1.02716]
D [0.55052, 0.70049] [0.54139, 0.75893] [0.52135, 0.72310]
ay [0.69663,0.99295] [0.38928,1.17760] [0.44874, 0.61742]
_ by [0.015245, 0.38927] [0.22170,0.29799] [0.32141, 0.36527]
ol an [0.036943,0.62242] [0.08488,0.34251] [0.07901,0.14588]
PN [0.03872, 0.16853] [0.025003,0.13874] [0.18110, 0.18123]
an [2.56066, 2.69271] [1.65731, 2.22683] [1.74361, 2.39868]
by [1.428845, 2.33717] [1.77586, 2.16486] [1.70362, 2.29352]
Mean
qn [2.19764,2.30402] [1.61052, 2.37936] [1.65621, 2.25097]
Pr [1.77657, 2.30401] [1.68037, 2.492011] [1.66439, 2.36508]
ay [6.98059,8.23299] [0.73184, 1.36073] [0.941745, 2.21622]
by [0.25652, 0.56396] [0.31173,0.35832] [0.28724, 0.46309]
200 MSE an [1.12979,2.25599] [0.351277, 0.86185] [0.39563, 1.00733]
Pn [0.15658, 0.33635] [0.29343, 0.49330] [0.19297, 0.43221]
an [2.64208,2.86931] [0.85547, 1.16650] [0.97043, 1.48869]
by [0.506478, 0.75097] [0.55833,0.59860] [0.53595, 0.68050]
RMSE
qn [1.06291,1.50199] [0.59268, 0.92836] [0.62899, 1.00366]
PN [0.39571, 0.57996] [0.54169, 0.70235] [0.43929, 0.65742]
Bias ay [0.79271,1.16066] [0.25731, 0.32683] [0.34361, 0.49868]
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by [0.071154, 0.33717] [0.16486,0.27586] [0.20362, 0.29352]
an [0.10235,0.60402] [0.07936,0.08947] [0.043784, 0.04902]
Py [0.023423, 0.19598] [0.00798,0.11962] [0.13491,0.13560]

Table 3 shows the lowest MSE and RMSE values for the MLE method, indicating that it is the
most accurate. Bias is low in all methods, reflecting the quality of the estimates. MLE (Maximum
Likelihood Estimation) showed superior performance, especially with large sample sizes, making it the
best fit for the distribution. LSE and WLSE perform well with small sample sizes but are less accurate as
the size increases.

6. Application
To demonstrate the extent of the quality of the distribution and its efficiency in practical
applications, the practical aspect is an important aspect to show this, as in this part a practical applications
is conducted on real neutrosophic data that is used [31], with a comparison of the results obtained between
the proposed distribution and six other distribution represented by:
¢ Neutrosophic beta inverse Wiebull (NBelW)
Neutrosophic Kumaraswamy inverse Wiebull (NKulW)
Neutrosophic Exponeted generalized inverse Wiebull (NEGIW)
Neutrosophic log-Gamma inverse Wiebull (NLGamIW)
Neutrosophic Gompertz inverse Wiebull (NGolW)
e Neutrosophic inverse Wiebull (NIW)
This comparision required the use of four information criteria, which are (AIC [19], CAIC [32],
[33], HQIC [34], [35], , and BIC [36]) in addition to four statistical measures, which are (Kolmogorov-
Smirnov (KS), Anderson- Darling (A), Cramér-von Mises (W), and p-value [37], [38]).
Data set-1
The first represented by mortality data for children under five years of age [31].
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The results of the criteria for the distributions were displayed in Table 4, while Table 5 expressed
the value of the statistical measures, while Table 6 displayed the values of the estimated parameters for
each distribution.

Table 4. results of the criteria for the distributions

Dist. 2L AIC CAIC BIC HQIC
HWIW [85.40969,85.5326] | [178.8194,179.06] | [180.7241,180.97] | [183.851,184.097] | [180.268,180.514]
BelW [86.0416, 87.6206] | [180.089, 183.302] | [181.994, 185.207] | [185.122, 188.334] | [181.538, 184.751]
Kulw [86.1110, 86.5381] | [180.234, 181.085] | [182.139, 182.990] | [185.267, 186.118] | [181.683, 182.535]
EGIW [86.2713,86.31197] | [180.564,180.649] | [182.469,182.554] | [185.597,185.681] | [182.014,182.098]
LGamIW | [85.63031,85.8919] | [179.260,179.785] | [181.165,181.690] | [184.293,184.818] | [180.709,181.235]
GolW [87.0561, 87.2476] | [182.112, 182.495] | [184.017, 184.400] | [187.144, 187.527] | [183.561, 183.944]
W [96.1148, 104.916] | [196.24, 213.9324] | [196.761, 214.454] | [198.756, 216.448] | [196.9645, 214.65]

From Table 4, NHWIW achieved the lowest values for most of the criteria, indicating its high fit
to the data. The IW distribution was the least efficient due to its high values, as low values of the criteria
enhance the stability of the distribution when comparing models with different complexities .

Table 5. value of the statistical measures

Dist. W A K-S p-value
HWIW [0.03774283,0.0473640] [0.313303,0.341763] [0.103911, 0.106321] [0.900544,0.9142441]
BelW [0.04349193,0.0582771] [0.3464307,0.40208] [0.088246, 0.119375] [0.8107124,0.9765447]
Kulw [0.04234476,0.0551776] [0.341253,0.386771] [0.081400, 0.094516] [0.9572919,0.9896749]
EGIW [0.04774075,0.0614708] [0.370513,0.420625] [0.082911, 0.090155] [0.9714649,0.9874063]
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LGamIW | [9.373411,9.426508] [52.44084, 52.46839] | [0.9483765, 0.94545] 5.551115e-16
GolW | [0.0627775,0.06469447] | [0.461921, 0.464890] | [0.12449, 0.1460138] | [0.5858848,0.7699224]
W [0.04225913,0.0575322] | [0.339643,0.397695] | [0.227421, 0.364774] | [0.001313552,0.1155558]

Table 5 shows that NHWIW achieved the highest p-value and lowest W and A values, reflecting
its high fit to the data. Other distributions showed poorer performance compared to NHWIW .
Table 6. Estimator value interval for parameters by MLE

Dist. ay by Gn Py
HWIW | [0.013462,0.0280360] | [3.3452479,3.5492839] | [7.5562016, 12.242277] | [1.918304,1.948398]
BelW [5.041547,6.880572] | [3.479567, 3.568686] | [6.136480,7.531162] | [0.966692,1.129877]
aw | 1585491, 5.858005] [4.048258,4.141243] | [6.026946, 6.382458] | L1-111050,1.119379]
EGIW | [3.8376168, 4.5794689] | [6.6182216, 7.6331922] | [7.205414,7.0723604] | [0.789913,0.848330]
LGamIW |  [7.337486, 8.415236] | [5.380997, 6.665243] | [7.4194373, 8.495675] | [1.17855,1194137]
GolW | [0.006215729,0.00781413] | [1.4543039, 1.4894439] | [1.9634420,1.9943284] | [1.486703,1.493761]
W [6.1610960,13.242297] | [0.8713852,1.14196]

Table 6 shows the estimated intervals of the main parameters of the NHWIW distribution compared
to other distributions (such as BelW, KulW, etc.) using the maximum likelihood estimation (MLE) method
for the first dataset. The NHWIW distribution showed narrow intervals of the parameters, indicating the
stability of the estimates, while other distributions such as BelW and KulW showed greater variation in
the intervals of the parameters, which may indicate their poor efficiency compared to NHWIW.
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Figure 3: (a) Fitting pdfs NHWIW with histogram data set, (b) Empirical Fitted CDFs
NHWIW with data set

Figure 3 (a) shows how well the probability density function (PDF) of the NHWIW distribution
matches the actual data for the first set. The distribution shows a strong fit with the structural distribution
of the data, with the curve following the shape of the experimental data. This indicates the ability of
NHWIW to accurately and flexibly represent real data. Figure 3 (b) shows the empirical CDF compared
with the theoretical CDF. The strong fit between the distributions reflects the efficiency of NHWIW in
representing the cumulative probability of the data.

Data set-2
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The second is COVID-19 in Netherlands for thirty days [39]
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Table 7. results of the criteria for the distributions
Dist. 2L AlC CAIC BIC HQIC
HWIW | [76.43589,77.09943] | [160.8718, 162.1989] | [162.4718,163.7989] | [166.4766,167.8036] | [162.6648,163.9919]
BelW | [76.48142,77.32048] | [160.9628, 162.641] | [162.5628,164.241] | [166.5676,168.2457] | [162.7559,164.434]
KulW | [76.59179, 77.27442] | [161.1836, 162.5488] | [162.7836,164.1488] | [166.7884,168.1536] | [162.9766,164.3419]
EGIW | [78.25885, 79.37512] | [164.5248, 166.7519] | [166.1248,168.3519] | [170.1296,172.3567] | [166.3179,168.545]
LGamIW | [76.56406, 77.31349] | [161.1281, 162.627] | [162.7281,164.227] | [166.7329,168.2318] | [162.9211,164.42]
GolW | [77.94244,79.25779] | [163.9185, 166.5239] | [165.5185,168.1239] | [169.5233,172.1287] | [165.7115,168.3169]
IwW [80.90795, 81.86503] | [165.8159, 167.7301] | [166.2603,168.1745] | [168.6183,170.5325] | [166.7124,168.6266]

Table 7 compares NHWIW with other distributions using informative criteria such as AIC, BIC,
CAIC, and HQIC for the second dataset. NHWIW distribution had the lowest values for all criteria
compared to other distributions. Other distributions, such as IW and GolW, showed high values, indicating
their poor performance in fitting the data.

Table 8. value of the statistical measures

Dist. W A K-S p-value
HWIW [0.0233792, 0.0241559] | [0.1664448, 0.1756536] | [0.070432, 0.0770078] [0.9881955, 0.99588]
BelW [0.02499, 0.02863132] [0.185047, 0.2137449] | [0.08221554,0.085797] [0.96637, 0.977128]
Kulw [0.0217852, 0.0257614] | [0.1728076, 0.1938708] | [0.0685944, 0.076441] [0.9891058,0.9971004]
EGIW [0.0612384, 0.082723] [0.4535322, 0.57210] [0.1106459, 0.114588] [0.784162,0.8173854]

LGamIW [9.976712,10.01212] [60.25735,60.30363] [0.9854649, 0.987072] 1.221245e-15
Golw [0.0474965, 0.0719870] | [0.3674051, 0.5081394] | [0.0990987, 0.105585] [0.8571036,0.9018158]
W [0.1411036, 0.1590753] [0.940501, 1.032139] [0.1517456, 0.153257] [0.4380138,0.4503734]

Table 8 NHWIW had the highest p-value and the lowest values for W, A, and K-S, indicating that
this distribution is superior to other distributions and provides an excellent fit to the data and there is no

evidence to reject the hypothesis of the distribution. Distributions such as IW showed high values for the
criteria, reflecting their poor representation of the data.

Table 9. Estimator value interval for parameters by MLE

Dist.

ay bN qn Dn

HWIW [5.837801, 6.1923656] [4.02133, 4.2564547] [0.8979603,0.91083] [0.3596752,0.37002]
BelW [0.326699, 0.5555232] [23.3992253,26.28143] | [13.330017,19.726555] | [0.642861,0.746774]
KulwWw [3.5882782,9.1795205] [65.592337, 74.372615] | [1.0179446, 2.7114185] | [0.421744,0.426545]
EGIW [4.458458,5.3694787] [2.5368242, 2.864744] | [3.8798198,4.1462443] | [0.652446,0.696044]
LGamIW [0.4306123, 0.5999024] [21.714107, 25.562351] | [12.796964,15.607732] | [0.624186,0.698871]
Golw [7.8853573,8.9050606] [0.9466685, 1.2100697] | [7.3119639,8.3552368] | [0.706303,0.712820]
W - - [7.869781, 8.576315] [1.553003, 1.564124]

Table 9 NHWIW distribution showed more accurate and stable estimation intervals compared to
other distributions. Distributions such as GolW and BelW showed wide variations in estimates.
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Figure 4: (a) Fitting pdfs NHWIW with histogram data set2, (b) Empirical Fitted CDFs
NHWIW with data set2

Figure 4 (a) shows how well the PDF of the NHWIW distribution fits the real data of the second
group (COVID-19 data). The curve shows that NHWIW captures the main characteristics of the data. The
good fit indicates the flexibility of the distribution in dealing with different types of data. Figure 4 (b)
compares the empirical CDF with the theoretical NHWIW CDF for the second group of data. The close
fit between the two curves reflects the accuracy of NHWIW in predicting the cumulative probabilities of
the data. This enhances the reliability of the distribution and its relevance to real-world data such as
COVID-19.

Conclusion

The NHWIW distribution showed high efficiency in representing real data compared to 6 other
distributions. NHWIW outperformed in information criteria (AIC, BIC, CAIC, HQIC) and statistical
criteria (K-S, W, A, p-value). The distribution has great flexibility that enables it to adapt to uncertain or
ambiguous data using neutrosophic parameters. The maximum likelihood method (MLE) was the most
accurate in estimating the parameters, indicating the stability of the model. Simulations proved that
NHWIW provides accurate estimates even with small or medium sample sizes. The distribution is suitable
for representing real data such as under-five mortality and COVID-19 data in the Netherlands. NHWIW
showed high agreement with experimental data as shown in the figures. NHWIW represents an important
step in applying neutrosophic logic in statistical modeling and bridges the research gap in integrating
ambiguous data with complex mathematical distributions.
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