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Abstract. A system of Fredholm integro-differential equations involving first and second derivatives is addressed using the
Successive Approximation Method (SAM) combined with an iterative algorithm. Starting from an initial estimate, the integral term
evaluated using previous iterates is treated as a known forcing function in each iteration. This transforms the original
integro-differential system into a sequence of linear differential systems, which are then solved under given boundary or initial
conditions. Convergence and uniqueness of the solution are rigorously established, and the resulting approximate solution is shown
to converge the exact one as the iteration proceeds. Numerical examples demonstrate that SAM produces accurate approximations
with controlled error and good computational efficiency.

Keywords: System of Fredholm, integro-differential equations ,The Successive Approximation Method
Introduction

Integral equations can articulate a range of topics in mathematical physics. Certain systems will be utilized as examples; compiling a
comprehensive list of such applications would be practically impossible. The body of literature concerning integral equations and their
applications is vast. This section will examine systems of Fredholm integro-differential equations of the second kind, expressed as follows:

Y = F) + A4 2 TrCx O (D) + e(x, DED]dE

. 1
) = g0 + A f) [n(x OP() + £(x, t)E(t)]dt} )

And the kernel of the system form is:
i—'1
u(x,t) = z hu;;o;
j=1

where yi(x) = % ,EH(x) = % ,since the resultant system integrates both the differential and integral operators, it is essential to
provide beginning conditions. 1 (0),’(0), ...y~ (0) for the identification of the specific solution ¥ (x,t) of the Fredholm
integro-differential equation(1).The unknown function 1(t), £(t) that will be established appear within the integral sign, but the
derivatives of ¥ (t), £(t) appear mostly outside the integral sign ,The kernel u(x,t)and the given f(x), g(x) are real-valued
function, and 1,4, are arbitrary constants , x is variable and ¥ (t),(t) , A system of Fredholm integro-differential equations
combining first and second derivatives arises in modeling processes with both local dynamics and nonlocal interactions and requires
specialized techniques for solution The successive approximation method transforms the original coupled system by isolating the
integral terms and treating them as known based on previous iterates in each cycle Through this iterative framework the
integro-differential equations are reduced to a sequence of linear ordinary differential problems[1]. each with updated forcing terms
determined from the previous iteration The procedure begins with an initial guess that satisfies any prescribed boundary on
properties of the kernel functions and the linear operators to ensure that the sequence converges to the true solution which can be
rigorously justified under suitable conditions The successive approximation method offers computational efficiency by leveraging
existing solvers for ordinary differential equations [2]and[3]. and can achieve high accuracy as iterations progress Numerical case
studies demonstrate that SAM effectively handles the coupling between first and second derivatives within the Fredholm framework
while maintaining stability and controllable error growth or initial conditions,[4]and[5] and updates the solution by solving the
linearized differential systems, then evaluating the integral kernels against the current approximation Convergence of the

method[6]and[7] relies thereby providing a robust numerical tool for this class of integro-differential systems.
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Methodology Description

The (SAM) gives a system that may solve initial value or integral equations. This approach solves any problems by uncovering
consecutive approximations of the answer. The procedure begins with an initial estimate as py(x), which is termed, the in
approximations and may be any real-valued function p,(x). The zeroth approximation will then be utilized in a related to recurrence
to discover the subsequent approximations. Provide the (NLFIE) of the second kind.

Pa(®) = FO) + [ p(0, ) Pp_g (Ot n > 1 ®)

where 1 (x) represents the undetermined function that has to be decided and u(x, t) represents the kernel.the recurrence

connection is shown via the use of the successive approximations method.
b .
Yj(x) = f(x) + [, px,t) P;(t)dt ,j =0 ®)

Where the zeroth estimate 1, (x), might be any specific authentically appreciate function. We always start with a beginning guess
for ¥, (x) , and for ¥y (x) , we almost always choose either (0.1) or x as our starting guess. When this value of 1,(x) is inputted

in to equation (2), some successive estimate of y;(x),j = 1 will be determined as:

b
D) = F) + f u(x, 6) o (£)dt

b
D0 = F(0) + f u(x, ©) r (0)de

b
() = FOO) + f 1 O Yy (D)t

a

Consequently, the configuration ¢, (x) may be obtained by employing.

Yo ) = lim ;15 (%)
By way of illustration, the successive approximation technique, also known as the picard iteration strategy, will be discussed in
further detail.

Analysis of Fredholm Integro-Differential Equation by Using Successive Approximation Method
(SAM)

The Successive Approximation Method is a reliable technique previously utilized to solve Fredholm integro-differential
equations. This section will employ cubic splines to address systems of second-kind Fredholm integro-differential equations in a
manner consistent with our previous methodology. This technique efficiently resolves any Fredholm problem through Successive
Approximation Method, producing accurate answers. This section will analyze systems of Fredholm integro-differential equations

as follows;

P =f(x) + 44 f,f [nCx, )Y (t) + pu(x, 1)E (t)]dt}
§(x) = g(x) + A2 J} [1(x, OP(®) + plx, OE(D)]de

And the kernel of the system form is:

-1
ulx,t) = Z hu;jo;
j=1

Phasel: Integrating both sides the system (1) once or more from 0 to x, utilizing beginning conditions and proceeding
accordingly:
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Y = £ + A4 [V OO + plx, OF(©)]de

(5)
E@) = g(x) + 2z [, [n(x, O (L) + p(x, OF@©)]dt
Phase2: We transform ¢ (x) = é(x) = S(x)

Phase3: The Successive Approximation Method is defined by the subsequent formula

P (x) = F) + [) px, ) P;(Odt ,j >0 (6)

The recurrence connection is shown via the use of the progressive approximations approach.
Yija(x) =f(x) + Zj"hf: i (xx, Y ;(Hdt i=1,2,..,n (M

Where the zeroth estimate, y;,(x), might be any specific authentically appreciated function. We always start with a beginning guess
for v, (x), and for 1,4 (x), we almost always choose either 0,1 or x as our starting guess. When this value of 1;,(x) is inputted
into equation (5), some successive estimates of

Vi, (x),j = 1 will be determined as.

m b
PuG = F@+ ) [y GOt
Jj=1Jq

m b
Va0 = F@+ Y| iy GO e
Jj=1Jq

Consequently, the configuration ;(x),i = 1,...,m may be obtained by employing
Pi(x) = Llim Vin+1(x)

Phase4: By using of the progressive approximations approach.
Yijer(0) = FOO + T f 1y Oy (Ddt i=1,2,.,m (8

Phaseb: In the equal, using the a The Successive Approximation Method to the resultant system produces an approximate
solution to the problem. (7) as S;(t), given by equation (5)

Quantitative Illustrations

This section presents three examples to demonstrate the effectiveness and accuracy of the recommended technique. The computed
inaccuracies e; are delineated by e; = | ; — S;| where wu; is the precise solution of system (3)and y(t),&(t) represents an
estimated solution to the identical equation. We additionally compute the Least Squares Error. (LSE), defined by the
formula. X7, (¥, — S)? ,All computations are executed with the Matlab program

Examplel:Use the successive approximation method to solve the following system of Fredholm integro-differential

equations

{w'm =L 2x + [ @) + tp(t)]dt}

, ; 1y , )
§(0) =5 —2x + [, [ p(®) + £2§(D)]dt

Integrating both sides the system (9) once from 0 to x and the application of initial circumstances and the subsequent actions as
the

{zp(x) = Zx+2a2 + [) xt? P(e)dt + [, xt E(t)dt} )

§) = —x— 2 + [ 2t P(O)dt + [ x t2E(t)dt
The exact solution to this system is provided by ¥(x) = x + x?

Table(1) show a comparison between the exact and numerical solution using a (SAM) for (x) for example (1), dependent on
the least square error with h = 0.2
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Table(1): The Numerical Results for Example (1) forn =5

X 2 Si | i — S;I?
0.0 0.000000000000 0.0000000000000 0.000000000000
0.2 0.240000000000 0.1856000000000 0.002959360000
04 0.560000000000 0.5047000000000 0.003058090000
0.6 0.960000000000 0.9178000000000 0.001780840000
0.8 1.440000000000 1.411400000000 0.000817960000
1.0 2.000000000000 1.981800000000 0.000331240000
LSE 0.894749000x 102

The exact solution to this system is provided by &(x) = x — x?

Table(2) show a comparison between the exact and numerical solution using a (SAM) for &(x) for example (#), dependent on the

least square error with h = 0.2

Table(2): The Numerical Results for Example (1) forn =5

X; & S; 1§ — S
0.0 0.000000000000 0.0000000000000 0.000000000000
0.2 0.160000000000 0.1178000000000 0.001780800000
0.4 0.240000000000 0.1971000000000 0.001840410000
0.6 0.240000000000 0.2073000000000 0.001069290000
0.8 0.160000000000 0.1379000000000 0.000488410000
1.0 0.000000000000 -0.014100000000 0.000198810000
LSE 0.537772000x 102
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Figure(1): Offers a comparison between the exact answer and the numerical answers obtained using (SAM) interpolation for ¥ (x)
and &é(x) inexample 1, based on the least square error with h = 0.2

Example(2): Use the successive approximation method to solve the following system of Fredholm integro-differential equations
{w’(x) = —0.4597sinx + 0.15853cosx + fol [sinxy(t) + cosx &(t)]dt 1)

§'(x) = —0.4597cosx + 0.15853sinx + fol[cosxt,b(t) + sinx &(t)]dt
Integrating both sides the system (11) once or more from 0 to x and the utilizing initial conditions and the subsequent as the

P(x) = —0.4597 + 0.4597cosx + 0.15853sinx + fol[l — cosx|y(t)dt
+ fol sinx &(t)dt
&é(x) =1.15853 — 0.4597sinx — 0.15853cosx + fol sinx Y (t)dt
+ fol[cosx —1]&(t)dt )

(12

When we use the Maclaurin series on sinx and cosx , we arrive at the following result:
The exact solution to this system is provided by (x) = sinx

Table(3) show a comparison between the exact and numerical solution using a (SAM) for ¥ (x) for example (2), dependent on
the least square error with h = 0.2

Table(3): The Numerical Results for Example (2) forn =5

Xi Y S | — SiI?
0.0 0.000000000000 0.0000000000000 0.000000000000
0.2 0.003490650000 0.1840000000000 0.032583625000
0.4 0.006981260000 0.4585000000000 0.203869172000
0.6 0.010471784000 0.6586000000000 0.420070184000
0.8 0.013962180000 0.7741000000000 0.577809505000
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1.0 0.017452406000

0.9573000000000

0.883313499000

LSE

2.117645982000

The exact solution to this system is provided by ¥ (x) = cosx

Table(4) show a comparison between the exact and numerical solution using a (SAM) for &(x) for example (2), dependent on the

least square error with h = 0.2

Table(4): The Numerical Results for Example (2) forn =5

X; & S; 1§ — S
0.0 1.000000000000 1.0000000000000 0.000000000000
0.2 0.999990000000 1.0735000000000 0.005403720000
0.4 0.999970000000 1.2665000000000 0.071038240000
0.6 0.999940000000 1.4175000000000 0.174356353000
0.8 0.999900000000 1.8512000000000 0.724711690000
1.0 0.999840000000 1.7203000000000 0.519062611000
LSE 1.4946000000000
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Figure(2): Offers a comparison between the exact answer and the numerical answers obtained using (SAM) interpolation for ¥ (x)
and £(x) inexample 1, based on the least square error with h = 0.2

Example(3): Use the successive approximation method to solve the following system of Fredholm integro-differential equations:

G e AW VAR O BN
g =e*+ -1y Ay - g@)ar

4
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Integrating both sides the system (13) twice from 0 to x and the utilization of initial conditions and the subsequent actions

Y = e+ (DT D [y + £2)at

F@) = e+ (G- S DT T o) - £@)de

(14)

When we use the Maclaurin series on e™* and e~2* , we arrive at the following result

The exact solution to this system is provided by ¥ (x) =e™*

Table(5) show a comparison between the exact and numerical solution using a (SAM) for ¥ (x) for example (3), dependent on the

least square error with h = 0.2

Table(5): The Numerical Results for Example (3) forn =5

Xi Y, S; [; — S;I?
0.0 1.000000000000 1.0000000000000 0.000000000000
0.2 0.818730800000 0.6687000000000 0.022509240000
0.4 0.670320046000 0.4293000000000 0.058090662000
0.6 0.548811857000 0.2200000000000 0.108117237000
0.8 0.449328964000 -0.024100000000 0.224134984000
1.0 0.367879441000 -0.366800000000 0.539753881000
LSE 0.952606004000

The exact solution to this system is provided by (x) = e™2*

Table(6) show a comparison between the exact and numerical solution using a (SAM) for é(x) for example (3), dependent on the

least square error with h = 0.2

Table(6): The Numerical Results for Example (3) forn = 5

Xi Si S; 1§ = Sil?
0.0 1.000000000000 1.0000000000000 0.000000000000
0.2 0.670320022600 0.8119000000000 0.020044890000
0.4 0.449328964000 0.6426000000000 0.037353693000
0.6 0.301194211000 0.4836000000000 0.033271871000
0.8 0.201896518000 0.3274000000000 0.015751123000
1.0 0.135335283000 0.1657000000000 0.000922016000
LSE 1.07343593x 1071
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Figure(3): Offers a comparison between the exact answer and the numerical answers obtained using (SAM) interpolation for ¥ (x)
and &(x) in example 3, based on the least square error with h = 0.2

Table(7): LSE for different values of n for example (1)-(3)
LSEn n=>5 n=>5
¥, $;
Example 1 0.894749000% 102 0.537772000x 1072
Example 2 2.11764598200 1.494600000000
Example 3 9.526060041071 1.07343593% 1071
Conclusions
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The successive approximation method transforms the coupled Fredholm integro-differential system featuring first and second
derivatives into a convergent iterative scheme each iteration requiring the solution of a linear differential problem with updated
source terms derived from previous approximations, The method’s convergence and accuracy are ensured under mild assumptions
on the kernels and operators and it efficiently leverages existing ordinary differential equation solvers Numerical examples confirm
that SAM achieves high-precision results often matching analytical solutions in few steps.

References

[1] R. . Agarwal, D. O’Regan, and P. J. . Wong, “Eigenvalues of a system of Fredholm integral equations,” Math. Comput. Model., vol. 39,
no. 9-10, pp. 1113-1150, May 2004, doi: 10.1016/S0895-7177(04)90536-5.

[2] “Mathematics 1950 58286 Linear integral equations.pdf.”

[3] K. Maleknejad, N. Aghazadeh, and M. Rabbani, “Numerical solution of second kind Fredholm integral equations system by using a
Taylor-series expansion method,” Appl. Math. Comput., vol. 175, no. 2, pp. 1229-1234, Apr. 2006, doi: 10.1016/j.amc.2005.08.039.

[4] A. D. Polyanin, Handbook of Exact Solutions to Mathematical Equations. Boca Raton: Chapman and Hall/CRC, 2024. doi:
10.1201/9781003051329.

[5] T. Mavoungou and Y. Cherruault, “Solving frontier problems of physics by decomposition method: a new approach,” Kybernetes, vol.
27, no. 9, pp. 1053-1061, Dec. 1998, doi: 10.1108/03684929810246080.

[6] A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory. in Nonlinear Physical Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-00251-9.

[7] A.-M. Wazwaz, “The variational iteration method for solving linear and nonlinear systems of PDEs,” Comput. Math. with Appl., vol.
54, no. 7-8, pp. 895-902, Oct. 2007, doi: 10.1016/j.camwa.2006.12.059.

17



