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Abstract. A system of Fredholm integro-differential equations involving first and second derivatives is addressed using the 

Successive Approximation Method (SAM) combined with an iterative algorithm. Starting from an initial estimate, the integral term 

evaluated using previous iterates is treated as a known forcing function in each iteration. This transforms the original 

integro-differential system into a sequence of linear differential systems, which are then solved under given boundary or initial 

conditions. Convergence and uniqueness of the solution are rigorously established, and the resulting approximate solution is shown 

to converge the exact one as the iteration proceeds. Numerical examples demonstrate that SAM produces accurate approximations 

with controlled error and good computational efficiency. 

Keywords: System of  Fredholm , integro-differential equations ,The Successive Approximation Method 

Introduction  

      Integral equations can articulate a range of topics in mathematical physics.  Certain systems will be utilized as examples; compiling a 

comprehensive list of such applications would be practically impossible. The body of literature concerning integral equations and their 

applications is vast.  This section will examine systems of Fredholm integro-differential equations of the second kind, expressed as follows: 

{
𝝍𝒊(𝒙) = 𝒇(𝒙) + 𝝀𝟏 ∫ [𝝁(𝒙, 𝒕)𝝍(𝒕) + 𝜺(𝒙, 𝒕)𝝃(𝒕)]𝒅𝒕

𝒃

𝒂

𝝃𝒊(𝒙) = 𝒈(𝒙) + 𝝀𝟐 ∫ [𝝁(𝒙, 𝒕)𝝍(𝒕) + 𝜺(𝒙, 𝒕)𝝃(𝒕)]𝒅𝒕
𝒃

𝒂

} (1) 

And the kernel of the system  form is: 

𝜇(𝑥, 𝑡) = ∑ℎ𝜇𝑖𝑗𝜑𝑖   

𝑖−`1

𝑗=1

 

where 𝜓𝑖(𝑥) =
𝑑𝑖𝑢

𝑑𝑥𝑖
 , 𝜉𝑖(𝑥) =

𝑑𝑖𝑣

𝑑𝑥𝑖
 ,since the resultant system integrates both the differential and integral operators, it is essential to 

provide beginning conditions. 𝜓(0), 𝜓′(0), …𝜓(𝑖−1)(0)  for the identification of the specific solution 𝜓(𝑥, 𝑡)  of the Fredholm 

integro-differential equation(1).The unknown function 𝜓(𝑡), 𝜉(𝑡) that will be established appear within the integral sign, but the 

derivatives of 𝜓(𝑡), 𝜉(𝑡) appear mostly outside the integral sign ,The kernel 𝜇(𝑥, 𝑡)and the given 𝑓(𝑥), 𝑔(𝑥)  are real-valued 

function, and 𝜆1, 𝜆2   are arbitrary constants , 𝑥 is variable and 𝜓(𝑡), 𝜉(𝑡)  , A system of Fredholm integro-differential equations 

combining first and second derivatives arises in modeling processes with both local dynamics and nonlocal interactions and requires 

specialized techniques for solution The successive approximation method transforms the original coupled system by isolating the 

integral terms and treating them as known based on previous iterates in each cycle Through this iterative framework the 

integro-differential equations are reduced to a sequence of linear ordinary differential problems[1]. each with updated forcing terms 

determined from the previous iteration The procedure begins with an initial guess that satisfies any prescribed boundary on 

properties of the kernel functions and the linear operators to ensure that the sequence converges to the true solution which can be 

rigorously justified under suitable conditions The successive approximation method offers computational efficiency by leveraging 

existing solvers for ordinary differential equations [2]and[3]. and can achieve high accuracy as iterations progress Numerical case 

studies demonstrate that SAM effectively handles the coupling between first and second derivatives within the Fredholm framework 

while maintaining stability and controllable error growth or initial conditions,[4]and[5] and updates the solution by solving the 

linearized differential systems, then evaluating the integral kernels against the current approximation Convergence of the 

method[6]and[7] relies thereby providing a robust numerical tool for this class of integro-differential systems. 
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Methodology Description 

 
    The (SAM) gives a system that may solve initial value or integral equations. This approach solves any problems by uncovering 

consecutive approximations of the answer. The procedure begins with an initial estimate as  𝑝0(𝑥), which  is termed, the in  

approximations and may be any real-valued function  𝑝0(𝑥). The zeroth approximation will then be utilized in a related to recurrence 

to discover the subsequent approximations. Provide the (NLFIE)  of  the second kind. 

 𝝍𝒏(𝒙) = 𝒇(𝒙) + ∫ 𝝁(𝒙, 𝒕) 𝝍𝒏−𝟏(𝒕)𝒅𝒕    𝒏 ≥ 𝟏
𝒃

𝒂
  (2)         

where 𝜓(𝑥) represents the undetermined function that has to be decided and 𝜇(𝑥, 𝑡)  represents the kernel.the recurrence 

connection is shown via the use of the successive approximations method. 

 𝝍𝒋+𝟏(𝒙) = 𝒇(𝒙) + ∫ 𝝁(𝒙, 𝒕) 𝝍𝒋(𝒕)𝒅𝒕 
𝒃

𝒂
 , 𝒋 ≥ 𝟎  (3) 

Where the zeroth estimate 𝜓0(𝑥), might be any specific authentically appreciate function. We always start with a beginning guess 

for 𝜓0(𝑥) , and for 𝜓0(𝑥) , we almost always choose either (0.1) or 𝑥 as our starting guess. When this value of  𝜓0(𝑥) is inputted 

in to equation  (2), some successive estimate of 𝜓𝑗(𝑥), 𝑗 ≥ 1  will be determined as: 

 𝜓1(𝑥) = 𝑓(𝑥) + ∫ 𝜇(𝑥, 𝑡) 𝜓0(𝑡)𝑑𝑡 
𝑏

𝑎

 

 𝜓2(𝑥) = 𝑓(𝑥) + ∫ 𝜇(𝑥, 𝑡) 𝜓1(𝑡)𝑑𝑡 
𝑏

𝑎

 

⋮ 

 𝜓𝑗(𝑥) = 𝑓(𝑥) + ∫ 𝜇(𝑥, 𝑡) 𝜓𝑗−1(𝑡)𝑑𝑡 
𝑏

𝑎

 

Consequently, the configuration 𝜑0(𝑥) may be obtained by employing. 

 𝜓0(𝑥) = lim
𝑛→∞

 𝜓𝑗+1(𝑥) 

By way of illustration, the successive approximation technique, also known as the picard iteration strategy, will be discussed in 

further detail. 

Analysis of Fredholm Integro-Differential Equation by Using Successive Approximation Method 

(SAM) 

    The Successive Approximation Method is a reliable technique previously utilized to solve Fredholm integro-differential 

equations.  This section will employ cubic splines to address systems of second-kind Fredholm integro-differential equations in a 

manner consistent with our previous methodology.  This technique efficiently resolves any Fredholm problem through Successive 

Approximation Method, producing accurate answers.  This section will analyze systems of Fredholm integro-differential equations 

as follows; 

{
𝝍𝒊(𝒙) = 𝒇(𝒙) + 𝝀𝟏 ∫ [𝝁(𝒙, 𝒕)𝝍(𝒕) + 𝝁(𝒙, 𝒕)𝝃(𝒕)]𝒅𝒕

𝒃

𝒂

𝝃𝒊(𝒙) = 𝒈(𝒙) + 𝝀𝟐 ∫ [𝝁(𝒙, 𝒕)𝝍(𝒕) + 𝝁(𝒙, 𝒕)𝝃(𝒕)]𝒅𝒕
𝒃

𝒂

} (4) 

And the kernel of the system  form is: 

𝜇(𝑥, 𝑡) = ∑ℎ𝜇𝑖𝑗𝜑𝑖   

𝑖−`1

𝑗=1

 

Phase1: Integrating both sides the system (1)  once or more from 0 to x, utilizing beginning conditions and proceeding 

accordingly: 
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{
𝝍(𝒙) = 𝒇(𝒙) + 𝝀𝟏 ∫ [𝝁(𝒙, 𝒕)𝝍(𝒕) + 𝝁(𝒙, 𝒕)𝝃(𝒕)]𝒅𝒕

𝒃

𝒂

𝝃(𝒙) = 𝒈(𝒙) + 𝝀𝟐 ∫ [𝝁(𝒙, 𝒕)𝝍(𝒕) + 𝝁(𝒙, 𝒕)𝝃(𝒕)]𝒅𝒕
𝒃

𝒂

}  (5) 

Phase2: We transform   𝜓(𝑥) = 𝜉(𝑥) = 𝑆(𝑥) 

Phase3: The Successive Approximation Method is defined by the subsequent formula 

 𝝍𝒋+𝟏(𝒙) = 𝒇(𝒙) + ∫ 𝝁(𝒙, 𝒕) 𝝍𝒋(𝒕)𝒅𝒕 
𝒃

𝒂
 , 𝒋 ≥ 𝟎  (6) 

The recurrence connection is shown via the use of the progressive approximations approach. 

 𝝍𝒊,𝒋+𝟏(𝒙) = 𝒇(𝒙) + ∑ ∫ 𝝁𝒊𝒋
𝒃

𝒂
𝒎
𝒋=𝟏 (𝒙, 𝒕)𝝍𝒊,𝒋(𝒕)𝒅𝒕      𝒊 = 𝟏, 𝟐, … ,𝓷 (7) 

Where the zeroth estimate, 𝜓𝑖0(𝑥), might be any specific authentically appreciated function. We always start with a beginning guess 

for 𝜓𝑖0(𝑥), and for 𝜓𝑖0(𝑥), we almost always choose either 0,1 𝑜𝑟 𝑥  as our starting guess. When this value of 𝜓𝑖0(𝑥) is inputted 

into equation (5), some successive estimates of  

 𝜓𝑖𝓃(𝑥), 𝑗 ≥ 1 will be determined as. 

 𝜓𝑖1(𝑥) = 𝑓(𝑥) +∑ ∫ 𝜇𝑖𝑗

𝑏

𝑎

𝑚

𝑗=1
(𝑥, 𝑡)𝜓𝑗0𝑑𝑡 

⋮ 

 𝜓𝑖,𝓃+1(𝑥) = 𝑓(𝑥) +∑ ∫ 𝜇𝑖𝑗

𝑏

𝑎

𝑚

𝑗=1
(𝑥, 𝑡)𝜓𝑗,𝓃𝑑𝑡 

Consequently, the configuration  𝜓𝑖(𝑥) , 𝑖 = 1, … ,𝑚  may be obtained by employing 

 𝜓𝑖(𝑥) = lim
𝓃→∞

 𝜓𝑖,𝓃+1(𝑥) 

Phase4: By using  of the progressive approximations approach. 

 𝝍𝒊,𝒋+𝟏(𝒙) = 𝒇(𝒙) + ∑ ∫ 𝝁𝒊𝒋
𝒃

𝒂
𝒎
𝒋=𝟏 (𝒙, 𝒕)𝝍𝒊,𝒋(𝒕)𝒅𝒕      𝒊 = 𝟏, 𝟐, … ,𝓷 (8) 

Phase5: In the equal, using the a The Successive Approximation Method to the resultant system produces an approximate 

solution to the problem. (7) as 𝑆𝑖(𝑡),  given by equation (5) 

Quantitative Illustrations 

 
   This section presents three examples to demonstrate the effectiveness and accuracy of the recommended technique. The computed 

inaccuracies 𝑒𝑖 are delineated by 𝑒𝑖 = | 𝜓𝑖 − 𝑆𝑖| where  𝑢𝑖  is the precise solution of system (3)and  𝜓(𝑡), 𝜉(𝑡)  represents an 

estimated solution to the identical equation.  We additionally compute the Least Squares Error. (LSE), defined by the 

formula.∑ (𝜓
𝑖
− 𝑆𝑖)

2𝑛
𝑖=0  ,All computations are executed with the Matlab program 

Example1:Use the successive approximation method to solve the following system of Fredholm integro-differential 

equations   

{
 𝝍′(𝒙) =

𝟕

𝟏𝟓
+ 𝟐𝒙 + ∫ [𝒕𝟐 𝝍(𝒕) + 𝒕𝝆(𝒕)]𝒅𝒕

𝟏

𝟎

𝝃′(𝒙) =
𝟕

𝟏𝟐
− 𝟐𝒙 + ∫ [𝒕𝟑 𝝍(𝒕) + 𝒕𝟐𝝃(𝒕)]𝒅𝒕

𝟏

𝟎

}   (9)                 

Integrating both sides the system (9)  once from 0 to 𝑥 and the application of initial circumstances and the subsequent actions as 

the 

{
 𝝍(𝒙) =

𝟕

𝟏𝟓
𝒙 + 𝒙𝟐  + ∫ 𝒙𝒕𝟐 𝝍(𝒕)𝒅𝒕 + ∫ 𝒙𝒕

𝟏

𝟎
𝝃(𝒕)𝒅𝒕

𝟏

𝟎

𝝃(𝒙) =
𝟕

𝟏𝟐
𝒙 − 𝒙𝟐  + ∫ 𝒙𝒕𝟑 𝝍(𝒕)𝒅𝒕 + ∫ 𝒙

𝟏

𝟎
𝒕𝟐𝝃(𝒕)𝒅𝒕

𝟏

𝟎

}  (10)      

The exact solution to this system is provided by  𝜓(𝑥) = 𝑥 + 𝑥2  

Table(1)   show a comparison between the exact and numerical solution using a (SAM)  for  𝜓(𝑥) for example (1), dependent on 

the least square error with ℎ = 0.2 
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Table(1):  The Numerical Results for Example (1) for 𝒏 = 𝟓 

| 𝜓𝑖 − 𝑆𝑖|
2 𝑆𝑖  𝜓𝑖 𝑥𝑖 

0.000000000000 0.0000000000000 0.000000000000 0.0 

0.002959360000 0.1856000000000 0.240000000000 0.2 

0.003058090000 0.5047000000000 0.560000000000 0.4 

0.001780840000 0.9178000000000 0.960000000000 0.6 

0.000817960000 1.411400000000 1.440000000000   0.8 

0.000331240000 1.981800000000 2.000000000000 1.0 

0.894749000× 10−2   LSE 

 

The exact solution to this system is provided by  𝜉(𝑥) = 𝑥 − 𝑥2 

Table(2)   show a comparison between the exact and numerical solution using a (SAM)  for 𝜉(𝒙) for example (#), dependent on the 

least square error with ℎ = 0.2 

Table(2):  The Numerical Results for Example (1) for 𝒏 = 𝟓 

|𝜉𝑖 − 𝑆𝑖|
2 𝑆𝑖 𝜉𝑖 𝑥𝑖 

0.000000000000 0.0000000000000 0.000000000000 0.0 

0.001780800000 0.1178000000000 0.160000000000 0.2 

0.001840410000 0.1971000000000 0.240000000000 0.4 

0.001069290000 0.2073000000000 0.240000000000 0.6 

0.000488410000 0.1379000000000 0.160000000000   0.8 

0.000198810000 -0.014100000000 0.000000000000 1.0 

0.537772000× 10−2   LSE 
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Figure(1): Offers a comparison between the exact answer and the numerical answers obtained using (SAM) interpolation for  𝜓(𝑥)  
and 𝜉(𝑥)  in example 1, based on the least square error with  ℎ = 0.2 

Example(2): Use the successive approximation method to solve the following system of Fredholm integro-differential equations   

{
𝝍′(𝒙) =  −𝟎. 𝟒𝟓𝟗𝟕𝒔𝒊𝒏𝒙 + 𝟎. 𝟏𝟓𝟖𝟓𝟑𝒄𝒐𝒔𝒙 + ∫ [𝒔𝒊𝒏𝒙𝝍(𝒕) + 𝒄𝒐𝒔𝒙 𝝃(𝒕)]𝒅𝒕

𝟏

𝟎

 𝝃′(𝒙) = −𝟎. 𝟒𝟓𝟗𝟕𝒄𝒐𝒔𝒙 + 𝟎. 𝟏𝟓𝟖𝟓𝟑𝒔𝒊𝒏𝒙 + ∫ [𝒄𝒐𝒔𝒙𝝍(𝒕) + 𝒔𝒊𝒏𝒙 𝝃(𝒕)]𝒅𝒕
𝟏

𝟎

}  (11) 

Integrating both sides the system (11) once or more from 0 to 𝑥 and the utilizing initial conditions and the subsequent as the  

{
 
 

 
 𝝍(𝒙) = −𝟎. 𝟒𝟓𝟗𝟕 + 𝟎. 𝟒𝟓𝟗𝟕𝒄𝒐𝒔𝒙 + 𝟎. 𝟏𝟓𝟖𝟓𝟑𝒔𝒊𝒏𝒙 + ∫ [𝟏 − 𝒄𝒐𝒔𝒙]𝝍(𝒕)𝒅𝒕

𝟏

𝟎

+∫ 𝒔𝒊𝒏𝒙
𝟏

𝟎
 𝝃(𝒕)𝒅𝒕

 𝝃(𝒙) = 𝟏. 𝟏𝟓𝟖𝟓𝟑 − 𝟎. 𝟒𝟓𝟗𝟕𝒔𝒊𝒏𝒙 − 𝟎. 𝟏𝟓𝟖𝟓𝟑𝒄𝒐𝒔𝒙 + ∫ 𝒔𝒊𝒏𝒙
𝟏

𝟎
𝝍(𝒕)𝒅𝒕

+∫ [𝒄𝒐𝒔𝒙 − 𝟏]𝝃(𝒕)𝒅𝒕
𝟏

𝟎 }
 
 

 
 

 (12 

When we use the Maclaurin series on 𝒔𝒊𝒏𝒙  and 𝒄𝒐𝒔𝒙 , we arrive at the following result: 

The exact solution to this system is provided by  𝜓(𝑥) = 𝑠𝑖𝑛𝑥  

Table(3)   show a comparison between the exact and numerical solution using a (SAM)  for  𝜓(𝒙) for example (2), dependent on 

the least square error with ℎ = 0.2 

Table(3):   The Numerical Results for Example (2) for 𝒏 = 𝟓 

| 𝜓𝑖 − 𝑆𝑖|
2 𝑆𝑖  𝜓𝑖  𝑥𝑖 

0.000000000000 0.0000000000000 0.000000000000 0.0 

0.032583625000 0.1840000000000 0.003490650000 0.2 

0.203869172000 0.4585000000000 0.006981260000 0.4 

0.420070184000 0.6586000000000 0.010471784000 0.6 

0.577809505000 0.7741000000000 0.013962180000   0.8 
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0.883313499000 0.9573000000000 0.017452406000 1.0 

2.117645982000   LSE 

The exact solution to this system is provided by  𝜓(𝑥) = 𝑐𝑜𝑠𝑥  

Table(4)   show a comparison between the exact and numerical solution using a (SAM)  for 𝜉(𝒙) for example (2), dependent on the 

least square error with ℎ = 0.2 

Table(4):   The Numerical Results for Example (2) for 𝒏 = 𝟓 

|𝜉𝑖 − 𝑆𝑖|
2 𝑆𝑖 𝜉𝑖 𝑥𝑖 

0.000000000000 1.0000000000000 1.000000000000 0.0 

0.005403720000 1.0735000000000 0.999990000000 0.2 

0.071038240000 1.2665000000000 0.999970000000 0.4 

0.174356353000 1.4175000000000 0.999940000000 0.6 

0.724711690000 1.8512000000000 0.999900000000   0.8 

0.519062611000 1.7203000000000 0.999840000000 1.0 

1.4946000000000   LSE 

  

Figure(2):  Offers a comparison between the exact answer and the numerical answers obtained using (SAM) interpolation for  𝜓(𝑥)  
and 𝜉(𝑥)  in example 1, based on the least square error with  ℎ = 0.2 

Example(3): Use the successive approximation method to solve the following system of Fredholm integro-differential equations:  

{
𝝍′′(𝒙) = 𝟒𝒆−𝟐𝒙 +

𝒆−𝟐

𝟐
+

𝒆−𝟒

𝟒
−

𝟑

𝟒
+ ∫ [𝝍𝟐(𝒕) +  𝝃𝟐(𝒕)]𝒅𝒕

𝟏

𝟎

𝝃′′(𝒙) = 𝒆−𝒙 +
𝒆−𝟐

𝟐
−

𝒆−𝟒

𝟒
−

𝟏

𝟒
+ ∫ [𝝍𝟐(𝒕) −  𝝃𝟐(𝒕)]𝒅𝒕

𝟏

𝟎

}  (13)    
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Integrating both sides the system (13)  twice from 0 to 𝑥 and the utilization of initial conditions and the subsequent actions 

{
𝝍(𝒙) = 𝒆−𝟐𝒙 + (

𝒆−𝟐

𝟐
+

𝒆−𝟒

𝟒
−

𝟑

𝟒
)
𝒙𝟐

𝟐
+

𝒙𝟐

𝟐
∫ [𝝍𝟐(𝒕) +  𝝃𝟐(𝒕)]𝒅𝒕
𝟏

𝟎

𝝃(𝒙) = 𝒆−𝒙 + (
𝒆−𝟐

𝟐
−

𝒆−𝟒

𝟒
−

𝟏

𝟒
)
𝒙𝟐

𝟐
+

𝒙𝟐

𝟐
∫ [𝝍𝟐(𝒕) −  𝝃𝟐(𝒕)]𝒅𝒕
𝟏

𝟎

} (14) 

When we use the Maclaurin series on 𝒆−𝒙  and 𝒆−𝟐𝒙 , we arrive at the following result 

The exact solution to this system is provided by  𝜓(𝑥) = 𝑒−𝑥  

Table(5)  show a comparison between the exact and numerical solution using a (SAM)  for  𝜓(𝑥) for example (3), dependent on the 

least square error with ℎ = 0.2 

Table(5):  The Numerical Results for Example (3) for 𝒏 = 𝟓 

|𝜓𝑖 − 𝑆𝑖|
2 𝑆𝑖 𝜓𝑖  𝑥𝑖 

0.000000000000 1.0000000000000 1.000000000000 0.0 

0.022509240000 0.6687000000000 0.818730800000 0.2 

0.058090662000 0.4293000000000 0.670320046000 0.4 

0.108117237000 0.2200000000000 0.548811857000 0.6 

0.224134984000 -0.024100000000 0.449328964000   0.8 

0.539753881000 -0.366800000000 0.367879441000 1.0 

0.952606004000   LSE 

 

The exact solution to this system is provided by  𝜓(𝑥) = 𝑒−2𝑥  

Table(6)  show a comparison between the exact and numerical solution using a (SAM)  for 𝜉(𝒙) for example (3), dependent on the 

least square error with ℎ = 0.2 

Table(6):   The Numerical Results for Example (3) for 𝒏 = 𝟓 

|𝜉𝑖 − 𝑆𝑖|
2 𝑆𝑖 𝜉𝑖 𝑥𝑖 

0.000000000000 1.0000000000000 1.000000000000 0.0 

0.020044890000 0.8119000000000 0.670320022600 0.2 

0.037353693000 0.6426000000000 0.449328964000 0.4 

0.033271871000 0.4836000000000 0.301194211000 0.6 

0.015751123000 0.3274000000000 0.201896518000   0.8 

0.000922016000 0.1657000000000 0.135335283000 1.0 

1.07343593× 10−1  

 

 

 

 LSE 
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Figure(3):  Offers a comparison between the exact answer and the numerical answers obtained using (SAM) interpolation for  𝜓(𝑥)  
and 𝜉(𝑥)  in example 3, based on the least square error with  ℎ = 0.2 

Table(7):       LSE for different values of  𝒏 for example (1)-(3) 

LSEn 𝑛 = 5 𝑛 = 5 

 𝜓
𝑖
   𝜉

𝑖
 

Example 1 0.894749000× 10−2 0.537772000× 10−2 

Example 2 2.11764598200           1.494600000000 

Example 3 9.5260600410−1 1.07343593× 10−1 

 

Conclusions 
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   The successive approximation method transforms the coupled Fredholm integro-differential system featuring first and second 

derivatives into a convergent iterative scheme each iteration requiring the solution of a linear differential problem with updated 

source terms derived from previous approximations, The method’s convergence and accuracy are ensured under mild assumptions 

on the kernels and operators and it efficiently leverages existing ordinary differential equation solvers Numerical examples confirm 

that SAM achieves high-precision results often matching analytical solutions in few steps. 
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